摘要:
A wafer marking is disclosed, which is represented by a large number of soft marks incorporated into a surface of a wafer. The soft marks each have a depth of at least 4 &mgr;m, an internal diameter of at least 50 &mgr;m and, in a particularly advantageous manner, a minimum gradient their surface of 0.2. These depressions can be proded, using appropriate technology, with depths of up to &mgr;m.
摘要:
A semiconductor layer, through which a main current flows, is so structured that a carrier life time in the semiconductor layer is ununiform in accordance with a predetermined distribution of the carrier life time. Thus, turn OFF characteristics of a semiconductor switching device can be improved without causing any unacceptable disadvantages for other characteristics.
摘要:
Structures and methods for fabricating high speed digital, analog, and combined digital/analog systems using planarized relaxed SiGe as the materials platform. The relaxed SiGe allows for a plethora of strained Si layers that possess enhanced electronic properties. By allowing the MOSFET channel to be either at the surface or buried, one can create high-speed digital and/or analog circuits. The planarization before the device epitaxial layers are deposited ensures a flat surface for state-of-the-art lithography.
摘要:
A compound semiconductor device having improved backgate voltage resistance characteristics. To improve the backgate voltage resistance of a compound semiconductor device having field effect transistors on a main surface of a semi-insulating substrate, boron ions are implanted on the rear surface to form a defect-rich layer having carrier recombination centers.
摘要:
A semiconductor device, such as an IC package, having the same size as an IC chip and having improved qualities is manufactured at a low cost by a particular manufacturing method. The semiconductor device has stepped-projection bumps bonded to electrode pads on a semiconductor substrate in which a semiconductor element is formed. A column portion and a portion in a horizontal portion of each stepped-projection bump are exposed while the other portion of the bump is covered with a protective material. When windows of the protective material corresponding to the column portions are formed, the windows are patterned by using a masking material based on a photoetching method, and the protective material is removed by etching.
摘要:
A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200° C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.
摘要:
A semiconductor substrate is provided which can efficiently exhibit intrinsic gettering (IG) effect, is less likely to cause slipping or dislocation, and causes no significant lowering in mechanical strength. The semiconductor substrate has bulk micro defects dispersed at a density of not less than 1011 micro defects/cm3 in the interior thereof.
摘要:
A semiconductor structure includes a substrate comprising a first relaxed semiconductor material with a first lattice constant. A semiconductor device layer overlies the substrate, wherein the semiconductor device layer includes a second relaxed semiconductor material with a second lattice constant different from the first lattice constant. In addition, a dielectric layer is interposed between the substrate and the semiconductor device layer, wherein the dielectric layer includes a programmed transition zone disposed within the dielectric layer for transitioning between the first lattice constant and the second lattice constant. The programmed transition zone includes a plurality of layers, adjoining ones of the plurality of layers having different lattice constants with one of the adjoining ones having a first thickness exceeding a first critical thickness required to form defects and another of the adjoining ones having a second thickness not exceeding a second critical thickness. Each adjoining layer of the plurality of layers forms an interface for promoting defects in the transition zone to migrate to and terminate on an edge of the programmed transition zone. A method of making the same is also disclosed.
摘要:
A silicon wafer for epitaxial growth consisting of a highly boron-doped silicon single crystal wafer, an antimony-doped silicon single crystal wafer or a phosphorus-doped silicon single crystal wafer, which allows easy oxygen precipitation and exhibits high gettering ability in spite of its suppressed oxygen concentration, and an epitaxial silicon wafer in which an epitaxial layer grown by using the aforementioned wafer as a substrate wafer has an extremely low heavy metal impurity concentration are produced with high productivity and supplied. The present invention relates to a boron-doped silicon single crystal wafer having a resistivity of from 10 m&OHgr;·cm to 100 m&OHgr;·cm, an antimony-doped silicon single crystal wafer, or a phosphorus-doped silicon single crystal wafer, which are produced by slicing a silicon single crystal ingot grown by the Czochralski method with nitrogen doping. The present invention also relates to an epitaxial wafer, wherein an epitaxial layer is formed on a surface of the aforementioned wafers. The present invention further relates to method for producing them.
摘要:
A process for heat-treating a single crystal silicon wafer to dissolve agglomerated vacancy defects and to influence the precipitation behavior of oxygen in the wafer in a subsequent thermal processing step is disclosed. The wafer has a front surface, a back surface, and a central plane between the front and back surfaces. In the process, the wafer is subjected to a thermal anneal to dissolve agglomerated vacancy defects present in a stratum extending from the front surface toward the center of the wafer. The annealed wafer is then heat-treated to form crystal lattice vacancies, the vacancies being formed in the bulk of the silicon. The heat-treated wafer is cooled from the temperature of said heat treatment at a rate which allows some, but not all, of the crystal lattice vacancies to diffuse to the front surface to produce a wafer having a vacancy concentration profile in which the peak density is at or near the central plane with the concentration generally decreasing in the direction of the front surface of the wafer.