Abstract:
A high-pressure discharge lamp may include a discharge vessel, which contains: electrodes, at least one noble gas as a start gas, at least one element selected from the group consisting of Al, In, Mg, Tl, Hg, and Zn for arc transfer and discharge vessel wall heating, and at least one rare earth halide for the generation of radiation, which is configured such that the generated light is dominated by molecular radiation, wherein at least one member of a first group of rare earth halides is used together with at least one member of a second group of rare earth halides, the first group having the property that the color distance decreases with a power increase when the power of the lamp is increased in a predetermined power interval, and the second group having the property that the color distance increases with a power increase when the power of the lamp is increased in this predetermined power interval.
Abstract:
A method for ignition control is described in which the load gradient is determined. The load gradient is compared with a first specifiable dynamic threshold and the ignition control variable is additively retarded by application of an adaptable dynamic derivative action if the load gradient exceeds the first dynamic threshold. If the load gradient exceeds a second specifiable dynamic threshold and no knock occurs, then the output dynamic derivative action is reduced so that the ignition is advanced again.
Abstract:
A device for suppressing knocks in internal combustion engines, in which the ignition firing point is adjusted after knocking has occurred, and this knock control is only activated in response to specifiable thermal conditions in the internal combustion engine. The gas-inlet temperature in the combustion chamber of the internal combustion engine is ascertained for the valuation of the thermal conditions of the internal combustion engine and for switching the knock control into the active state.
Abstract:
A wafer marking is disclosed, which is represented by a large number of soft marks incorporated into a surface of a wafer. The soft marks each have a depth of at least 4 &mgr;m, an internal diameter of at least 50 &mgr;m and, in a particularly advantageous manner, a minimum gradient their surface of 0.2. These depressions can be proded, using appropriate technology, with depths of up to &mgr;m.
Abstract:
To achieve a very sturdy automatic control of the boost pressure, the integration of system deviation of the boost pressure, which is carried out by an integrator, is limited to a predefinable limiting value. Limiting value is composed of a basic value and a correction value superimposed upon it. Correction value is determined adaptively as a function of speed, a plurality of speed ranges being predefined. Adapted correction value can be increased or reduced stepwise, which mainly depends on whether the integral-action component of the manipulated variable for the boost pressure is smaller or greater than the current limiting value.
Abstract:
A process for reducing pollutants, particularly nitrogen oxides from combustion gases during a combustion process that takes place while oxygen is supplied, includes providing oxygen needed for the combustion process by separating oxygen from a gas mixture containing oxygen and nitrogen in a two-step process including (a) enriching the gas mixture with oxygen in a first step to provide an enriched gas mixture; and (b) separating oxygen out of the enriched gas mixture in a second step, wherein, during at least one step oxygen depleted gas mixture is removed via an outlet provided with permeability means that cause the outlet to have a higher permeability for nitrogen than oxygen. A device for carrying out this process includes a device for separating oxygen out of a gas mixture containing oxygen and nitrogen including a housing having an inlet for the gas mixture; an outlet for the oxygen separated out of the gas mixture; and first and second apparatuses which have a respectively different permeability for oxygen and nitrogen, and which divide the device into first, second, and third chambers, wherein at least the second chamber is connected to an outlet provided with a permeability device that cause the outlet to have a higher permeability for nitrogen than for oxygen.
Abstract:
Devices and methods for knock detection and knock control are described, in which, in addition to the customary component parts, the knock-detection circuit has a filter with switchable filter characteristic. The switchover of the filter characteristic, i.e. the shift, for example, of the mid-frequency of the filter, is carried out taking into consideration specifiable quantities or parameters, for instance, as a function of rotational speed. During the switchover of the filter characteristic, i.e. the shift of the mid-frequency, problems could occur in the knock detection; that is why measures are proposed which carry out the knock detection according to a special knock-detection algorithm during a switchover phase lasting a specifiable time.
Abstract:
A method for error detection and error correction in the monitoring of measurement values is disclosed, in which the value to be tested is checked for plausibility in an evaluation device, for example a computer, and in the event that an implausibility is identified, the existence of an error is determined. If a further check finds that the error no longer exists, then an error correction takes place. A prerequisite for the error correction, however, is that the range of the value to be monitored in which the error has occurred is also the range in which a current error is no longer occurring. In an expanded method, a differentiation is also made between different errors and an error correction is only possible if it involves the same type of error.
Abstract:
A method for regulating knocking in an internal combustion engine, particularly of a motor vehicle, has the following steps: determining a knocking combustion for a calculated first base ignition angle in one or more cylinders of the internal combustion engine originated from a previous operating condition; and setting a new, second base ignition angle taking into account the existing operating condition. A query concerning the relative sizes of a setpoint ignition angle for efficiency reduction and the first base ignition angle is provided for setting the second base ignition angle to allow for knocking regulation which is favorable to the operation. If the setpoint ignition angle is smaller than the base ignition angle, an ignition angle retardation is performed with an adjustment value that must be adjusted, and which is given by the sum of a previously determined, constant retardation value and an adjusted, variable retardation value.
Abstract:
A method for determining the ignition point in ignition systems for internal combustion engines, having integrated knock control, a basic ignition point being determined on the basis of measured operating parameters using a stored characteristic map. The knock control, after engine knock has occurred, determines a knock control ignition point, which is more retarded than the basic ignition point, the knock control ignition point, in response to knock-free combustions, being altered step-by-step so as to be more advanced. Furthermore, a torque interface is integrated, which on the basis of the operating parameters and/or the demands placed by the driver, determines a torque-optimized ignition point, and the knock control ignition point being the most advanced permissible ignition point which is issued by the control unit.