Abstract:
A method for computing an ignition angle of an internal combustion engine as a function of the operating conditions of the engine and knock signals K, which indicate knocking combustion in the engine. If knock occurs, the ignition angle is retarded. If knock stops for a first period, the ignition angle is advanced again. Advance of the ignition angle is limited on the basis of the first period. If knock stops for a second period, which exceeds the first period, the ignition angle is further advanced.
Abstract:
A method for controlling knocking in internal combustion engines. According to this method, a map ignition angle is determined on the basis of detected operating parameters, to which a correction value is additively applied when knock events occur. The correction value is a function of a knock frequency.
Abstract:
A method for the adaptive knock control of an internal combustion engine serves for shifting the ignition angle of an internal combustion engine in the retard direction when knocking occurs and for subsequently carrying out a return of the ignition angle in the advance direction. At the same time, the internal combustion engine is to have sub-divided operating ranges, and a value of an ignition-angle retard, determined in a range during operation, is always stored when this range is left. At the same time, in particular an average of all the ignition angles outputted in a range or a retard value plotted by a digital low-pass filter is to be stored.
Abstract:
A protection system for a pressure-charged (supercharged) combustion engine. In normal operation, the pressure-charging is controlled and/or regulated to a specifiable desired setpoint value P Setpoint. For the case of over-boosting of the internal combustion engine, various protective measures are provided, which are used in dependence upon the extent of over-boosting. In the case of a first protective measure, the control and/or regulation of the pressure-charging is switched off, and a final controlling element, which influences the pressure-charging, is adjusted to a predeterminable position. In the case of a second protective measure, the fuel metering to individual cylinders is interrupted in accordance with a predetermined skip pattern. If it is not possible to achieve an adequate reduction in the pressure-charging by this means, the system switches successively to further skip patterns with a higher skip frequency.
Abstract:
A method for determining the ignition point in ignition systems for internal combustion engines, having integrated knock control, a basic ignition point being determined on the basis of measured operating parameters using a stored characteristic map. The knock control, after engine knock has occurred, determines a knock control ignition point, which is more retarded than the basic ignition point, the knock control ignition point, in response to knock-free combustions, being altered step-by-step so as to be more advanced. Furthermore, a torque interface is integrated, which on the basis of the operating parameters and/or the demands placed by the driver, determines a torque-optimized ignition point, and the knock control ignition point being the most advanced permissible ignition point which is issued by the control unit.
Abstract:
A method for detecting knocking provides for weighting or limitation of the knocking threshold. For this purpose, on the one hand a normal range of the reference level is defined and in the case of a deviation from this normal range the knocking threshold is multiplied by a weighting factor less than 1 and, alternatively, the knocking threshold is limited when a prescribable limit value is reached.
Abstract:
A method for computing an ignition angle of an internal combustion engine as a function of the operating conditions of the engine and knock signals K, which indicate knocking combustion in the engine. If knock occurs, the ignition angle is retarded. If knock stops for a first period, the ignition angle is advanced again. Advance of the ignition angle is limited on the basis of the first period. If knock stops for a second period, which exceeds the first period, the ignition angle is further advanced.
Abstract:
A method for error detection during an evaluation of sensor signals, in particular during an evaluation of output signals of knock sensors in an internal combustion engine, with at least one sensor and an evaluating device connected therewith, the method includes the steps of forming at least one variable reference level from output signals of a sensor or sensors; comparing the variable reference level for error detection with upper and/or limiting values; making a conclusion about an error in the case of a predeterminable exceeding of the upper and/or exceeding of the lower limiting value by the actual reference level; and forming at least one limiting value in dependence on preceding reference values.
Abstract:
A system for controlling the charging of an internal combustion engine contains an integral controller. If appropriate, a proportional controller and/or a differential controller may also be present. The integration, carried out by the integral controller, of the control error is limited to a prescribable limit value in order to avoid severe overshoots. Various limit values for steady-state operating states and for dynamic operating states can be prescribed. The dynamic limit value can be provided with corrections as a function of characteristic operating variables and with an adaptive correction and can be additionally increased by a safety interval.
Abstract:
A system for automatically controlling the supercharging of an internal combustion engine by controlling a variable parameter signal, such as pressure, air quantity, or air mass which characterizes the status of the internal combustion engine supercharging operation. The system includes a closed-loop control system. To optimize supercharging performance the response characteristic of the control system is determined as a function of the rotational frequency of the internal combustion engine and an operating parameter signal which characterizes the dynamic output response of the internal combustion engine and of the supercharger. In the case of large system deviations, the operating parameter signal is derived from the actual measured value of the control variable. The control system raises the value of the operating parameter signal when the control system is deactivated to avoid making an incorrect determination of the value of the operating parameter signal when the control system is then immediately reactivated. When small system deviations occur, the control system operates based on the assumption that the engine and supercharger are operating at a steady-state condition. Under such conditions, the control system uses a stored value for the value of the operating parameter signal.