摘要:
Systems and methods for estimating when an engine event occurs is described. The system includes a controller configured to receive a first signal from at least one knock sensor coupled to a combustion engine, receive a second signal from at least one engine crankshaft sensor coupled to the combustion engine, transform the first and second signals into a plurality of feature vectors using a multivariate transformation algorithm, determine an expected window of an engine event with a statistical model, center a segment of the plurality of feature vectors around the expected window, estimate, using the statistical algorithm, a time in the expected window corresponding to when the engine event occurred, and adjust operation of the combustion engine based on the time.
摘要:
A computer-implemented platform may comprise hardware and software configured to manage an engine using knock intensity data. Knock intensities from a plurality of combustion cycles may be used to estimate a statistical distribution of knock intensities. The distribution of knock intensities may be used to determine a Descriptive Statistic, which may represent a state of tune of the engine. A calculated Descriptive Statistic may be compared to a desired Descriptive Statistic (e.g., that is representative of operation during a desired tune state of the engine). A deviation between the calculated and desired knock intensity distributions (e.g., between the calculated DS and desired DS) may be used to adjust a control parameter of the engine. Adjustment may be engine-wide. Adjustment may be cylinder-by-cylinder.
摘要:
A method of deriving the health of a first cylinder in a reciprocating device includes receiving a first signal from a first knock sensor in proximity to the first cylinder, receiving a second signal from a second knock sensor in proximity to a second cylinder, processing the first signal and the second signal, and deriving the health of the first cylinder by determining whether the first signal is coherent with the second signal.
摘要:
An internal combustion engine knock determining device includes a vibration detector that produces a signal corresponding to engine vibration, an intensity computing unit that retrieves vibrational components in a plurality of frequency regions in which vibration intensity peaks are located when knock occurs, a background-noise computing unit that calculates background noise caused by factors other than knock, a frequency computing unit that determines specific frequency regions from which to determine whether knock is occurring by excluding certain frequency regions designated as frequency regions requiring exclusion due to the intensity of false-detection causing noise as a proportion of the background noise in the certain regions, and a knock determining unit that determines the occurrence of knock based on the vibration intensity in the specific frequency regions obtained by excluding the frequency regions requiring exclusion, wherein the number of specific frequency regions is increased to improve the accuracy of knock detection.
摘要:
In a method for recognizing knocking of an internal combustion engine, solid-borne sound signals are measured and solid-borne sound features are recovered from the measured sound signals. A peak pressure for a combustion event of the internal combustion engine is estimated from the solid-borne sound features, and the estimated peak pressure is compared with a knock recognition threshold, knocking of the internal combustion engine being recognized when the knock recognition threshold is exceeded by the estimated peak pressure.
摘要:
Embodiments may provide an engine knock monitoring system that may include an engine block including an engine block body and a cylinder wall defining at least a portion of a combustion chamber. A space may be defined between a top of the cylinder wall and a top of the engine block body. An engine knock sensor may be mounted to the engine block. A pressure pulse transmissive element may be disposed in the space and may be disposed in contact with an outside surface of the cylinder wall and an opposite inside surface of the engine block body.
摘要:
A method of deriving the health of a first cylinder in a reciprocating device includes receiving a first signal from a first knock sensor in proximity to the first cylinder, receiving a second signal from a second knock sensor in proximity to a second cylinder, processing the first signal and the second signal, and deriving the health of the first cylinder by determining whether the first signal is coherent with the second signal.
摘要:
A system includes a controller configured to receive a signal acquired by the at least one knock sensor coupled to a reciprocating device, to sample the received signal, to analyze the sampled signal, and to utilize standard quality control (SQC) techniques to perform real-time diagnostics on the reciprocating device based on the analyzed signal.
摘要:
An internal combustion engine knock controlling apparatus is obtained that improves knock detection performance by making a correction period appropriate without performing matching, when calculating a transition correction factor for correcting a filter coefficient used for calculating a mean value and a standard deviation of a knock signal in a transitional operation state. A previous value of a filter coefficient for calculating a knock determination threshold value that has been corrected by a transition correction factor is used for a filter coefficient for calculating the transition correction factor so that the response characteristics are made equal between a filtering process used for calculating a transition correction factor for correcting a knock determination threshold value and a filtering process used for calculating the knock determination threshold value in a transition operation period.
摘要:
A knock control apparatus for an internal combustion engine can remove regularly generated noise vibration in a simple and appropriate manner. The apparatus includes a knock sensor, a crank angle sensor, a vibration waveform detection unit that detects a vibration waveform of a knock natural frequency component, a vibration waveform average value calculation unit that calculates a vibration waveform average value corresponding to a noise vibration waveform by filtering the vibration waveform over a plurality of ignition cycles, a noise vibration waveform removal unit that removes the noise vibration waveform by subtracting the vibration waveform average value from the vibration waveform, a knock determination threshold value calculation unit that calculates a threshold value based on a peak value of the vibration waveform after removal of the noise vibration waveform, and a knock determination unit that determines whether a knock has occurred, by comparing the peak value with the threshold value.