摘要:
A phosphor layer of a plasma display panel has a green phosphor layer containing Zn2SiO4:Mn particles. The Zn2SiO4:Mn particles satisfy requirements of Zn3p/Si2p≧2.06 (1), and Zn2p/Si2p≧1.23 (2) wherein Zn3p represents an emission amount of photoelectrons emitted from a 3p orbit of a Zn element in a region up to 10 nm from surfaces of the particles, Zn2p represents an emission amount of photoelectrons emitted from a 2p orbit of the Zn element in a region up to 3 nm from the surfaces of the particles, and Si2p represents an emission amount of photoelectrons emitted from a 2p orbit of a Si element in the region up to 10 nm from the surfaces of the particles.
摘要:
A manganese activated zinc silicate phosphor comprising phosphor particles having a crystal lattice distortion factor of 0.01 to 1.0% which exhibites high emission intensity and reduced afterglow time and a PDP utilizing the same which exhibites high white luminance and a high luminance maintaining ratio.
摘要:
Provided is a plasma display panel (PDP) design that results in improved light emission efficiency and improved brightness and improved opening ratio. The PDP includes a transparent upper substrate, a lower substrate oriented parallel to the upper substrate, a first discharge electrode extending in a first direction on the lower substrate, a dielectric layer that covers the first discharge electrode, a plurality of barrier ribs made of a dielectric material between the upper and lower substrates dividing a space between the upper and the lower substrate into a plurality of discharge cells, a second discharge electrode within the barrier ribs and extending in a second direction to cross the first discharge electrode, a phosphor layer located within the discharge cell, and a discharge gas located within the discharge cell.
摘要:
An inorganic particle-containing composition comprising: (A) inorganic particles; (B) a binder resin; and (C) at least one plasticizer selected from the group consisting of compounds represented by the following formula (1): R1O—R2mOOC—(CH2nCOOR3—OmR4 (1) wherein R1 and R4are the same or different alkyl groups having 1 to 30 carbon atoms or alkenyl groups, R2 and R3 are the same or different alkylene groups having 1 to 30 carbon atoms or alkenylene groups, m is an integer of 0 to 5, and n is an integer of 1 to 10, and compounds represented by the following formula (2): wherein R5 is an alkyl group having 1 to 30 carbon atoms or alkenyl group. A transfer film and a plasma display panel production process using the composition are also described.
摘要:
The present invention provides a plasma display panel (PDP) with a structure that can reduce an outer reflection of an external light source and increase the reflection of visible rays emitted from the phosphor, remarkably increase the aperture ratio of the front panel, and remarkably reduce occurrence of a permanent residual image. The PDP includes: a transparent front panel; a rear panel disposed in parallel with the front panel; a plurality of opaque upper barrier ribs disposed between the front panel and the rear panel to define a plurality of discharge cells, and formed of a dielectric material; a lower discharge electrode and an upper discharge electrode disposed within the plurality of opaque upper barrier ribs so as to enclose the discharge cells; a plurality of lower barrier ribs disposed between the plurality of opaque upper barrier ribs and the rear panel; a phosphor layer disposed within a space defined by the plurality of lower barrier ribs; and a discharge gas disposed inside the discharge cells.
摘要:
An oxide composite particle of the present invention is composed of at least one fine gold particle contained in a matrix of an oxide particle or at least one fine gold particle supported fixedly on the surface of an oxide particle, and absorbs a visible light having a specific wavelength. A phosphor of the invention has a thin film which is composed of such oxide composite particles on the surface of a phosphor particle of red or the like. The phosphor can be obtained by mixing phosphor particles into a dispersion of gold colloid/oxide composite particles, agitating the resultant mixture, and taking out the precipitated phosphor particles, followed by drying. Further, in a color filter of the invention, a filter layer of at least one color formed on an inner surface of a panel is a thin film composed of the above-described oxide composite particles. This provides a phosphor or color filter which is excellent in optical characteristics, heat resistance and non-toxicity and never interferes with the irradiation of a photoresist with ultraviolet rays, and realizes a color display which exhibits good luminous chromaticity and is excellent in brightness and contrast.
摘要:
Provided are a novel blue BAM phosphor and a preparation method thereof. In the blue-emitting phosphor, a magnetoplumbite phase is epitaxially formed as a protection film on the β-phase of a blue BAM phosphor. The blue-emitting phosphor has high luminosity and broad color gamut, is invulnerable to mechanical damage, and can create uniform images, and thus, is very useful in fabrication of a high quality plasma display panel.
摘要:
A process of producing a plasma display panel has the steps of: forming a photosensitive paste composition layer on a carrier film; transferring the photosensitive paste composition layer onto a substrate; exposing the photosensitive paste composition layer; removing the carrier film; and baking the exposed composition layer to fabricate at least one of barrier ribs, electrodes, resistors, dielectrics, phosphors, a color filter array, and a black matrix.
摘要:
Almost only choice by a secondary electron emission layer/protection layer covering the dielectric layer of an AC type PDP has been magnesium oxide (MgO) that is unstable during the production process and difficult to form, thus posing a serious production problem. An AC type PDP constructed such that, instead of covering the surface of a dielectric layer (3) with a dielectric material such as MgO, an insular electrode (4) is made by forming a conductive material such as nickel, aluminum, magnesium and lanthanum hexaboride into an insular shape, and the insular electrode (4) is allowed to capacity-couple with a lower-layer bus electrode (9) by means of an electrostatic capacity formed by a dielectric layer (3) to operate the insular electrode (4) as a sustained electrode.