Abstract:
A phosphor, combined with LED having not exceeding 470 nm, of high emission intensity and with chemical and thermal stability is provided. The phosphor according to the present invention comprises an inorganic compound in which element A (A is one or two or more kinds of elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Yb) is solid solved in an inorganic crystal including at least metal element M and non-metal element X and represented by MnXn+1 (3≤n≤52), an inorganic crystal having the same crystal structure, or an inorganic crystal including a solid solution thereof. Here, M comprises at least Al and Si, and if necessary element L (L is a metal element other than Al and Si) and X comprises N, O if necessary, and element Z if necessary (Z is a non-metal element other than N and O).
Abstract:
The invention provides a lighting device comprising a solid state light source and a ceramic body, wherein the solid state light source is configured to provide blue light source light to the ceramic body, wherein the ceramic body comprises a ceramic material configured to wavelength convert part of the blue light source light into yellow converter light, to provide white lighting device light comprising said blue light source light and said yellow converter light, said white lighting device light having a color point selected from the range of 0.18≤u′≤0.25 and 0.42≤v′≤0.54, and wherein the ceramic material comprises a (Y(1-y-q-z),Gdy,Luq, Cez)3(Al(1-x),Gax)5O12 ceramic material, with 0≤x≤0.6, 0≤y≤0.5, 0≤q
Abstract:
Disclosed herein are green-emitting, garnet-based phosphors having the formula (Lu1−a−b−cYaTbbAc)3(Al1−dBd)5(O1−eCe)12:Ce,Eu, where A is selected from the group consisting of Mg, Sr, Ca, and Ba; B is selected from the group consisting of Ga and In; C is selected from the group consisting of F, Cl, and Br; and 0≤a≤1; 0≤b≤1; 0
Abstract:
A light-emitting device includes a light-emitting element for emitting primary light, and a wavelength conversion unit for absorbing part of the primary light and emitting secondary light having a wavelength longer than that of the primary light, wherein the wavelength conversion unit includes plural kinds of phosphors having light absorption characteristics different from each other, and then at least one kind of phosphor among the plural kinds of phosphors has an absorption characteristic that can absorb the secondary light emitted from at least another kind of phosphor among the plural kinds of phosphors.
Abstract:
Provided is fluorophore comprising: inorganic compound having: an inorganic crystal, where M element (M is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Yb) is solid solved, having the same crystal structure as the crystal represented by Ca2Si5O3N6 (including Ca2Si5O3N6 crystal or a solid solution thereof where one or more elements selected from Mg, Sr, Ba, Ge, Sn, Ti, Zr, Hf, B, Al, Ga, In, Sc, Y, La, and F are solid solved) and comprising: A element, D element, X element, and, if necessary, E element (A is one or more elements selected from Mg, Ca, Sr, and Ba; D is one or more elements selected from Si, Ge, Sn, Ti, Zr, and Hf; E is one or more elements selected from B, Al, Ga, In, Sc, Y, and La; and X is one or more elements selected from O, N, and F).
Abstract:
Disclosed herein are green-emitting, garnet-based phosphors having the formula (Lu1-a-b-cYaTbbAc)3 (Al1-dBd)5(O1-eCe)12: Ce,Eu, where A is selected from the group consisting of Mg, Sr, Ca, and Ba; B is selected from the group consisting of Ga and In; C is selected from the group consisting of F, Cl, and Br; and 0≦a≦1; 0≦b≦1; 0
Abstract:
There is provided a material for an organic electroluminescence device, which is a chrysene skeletal structure-containing diarylamine-based organic material as defined in the specification used for deposition of any layer of at least one organic layer contained in an organic electroluminescence device, wherein the water content ratio before deposition as measured by the Karl Fischer's method is from 100 to 1,000 ppm.
Abstract:
The invention relates to a sandwich structure (1) comprising a flexible Organic Light Emitting Diode (OLED) (2), wherein the opposite outer surfaces (3, 4) of said OLED (2) consist of a glass material, and at least one layer (5, 6) provided on at least one of said outer surfaces (3, 4) of said OLED (2) and comprising an organic polymer material, wherein said layer (5, 6) comprising an organic polymer material and said outer surface (3, 4) consisting of glass are bonded to each other in a stacking manner by a bonding layer (7, 8).
Abstract:
The present invention relates to the improvement of organic electroluminescent devices, in particular blue-emitting devices, by using compounds of the formula (1) or formula (2) as dopants in the emitting layer or as hole-transport material in a hole-transport layer.
Abstract:
Disclosed are a phosphor, a method for preparing and using the same, a light emitting device package, a surface light source apparatus, a lighting apparatus using the phosphor, and a display apparatus. The phosphor includes an inorganic compound represented by an empirical formula (Sr, M)2SiO4-xNy:Eu, where M is a metallic element, 0
Abstract translation:公开了荧光体,其制备和使用方法,发光器件封装,表面光源装置,使用荧光体的照明装置和显示装置。 荧光体包括由经验式(Sr,M)2 SiO 4-x N y:Eu表示的无机化合物,其中M是金属元素,0