Abstract:
A system for tracking the movement of an object includes a radar device having a first field of view. The radar device generates radar data indicating one of a range corresponding to a distance of a moving object within the first field of view from the radar device and a range rate corresponding to a rate at which the distance is changing relative to the radar device. The system also includes an imager having a second field of view at least partially overlapping the first field of view in an overlap field of view. The imager generates imager data measuring, when the object is in the second field of view, an angular position of the object relative to the imager in at least one dimension. In addition, the system includes a processor combining the radar data and imager data, when the object is in the overlap field of view, to identify a track of the object in at least two dimensions.
Abstract:
Disclosed is a moving object detection system and method. The moving object detection system includes an input unit receiving the sensed signals from two or more radar devices, a distance information computation unit computing distance information of the objects from the received signals, a grouping unit randomly selecting one signal to generate multiple signal groups, and generating the signal groups selected among the generated multiple signal groups as one signal group combination, a calculation unit calculating cross-correlation values for all the signal groups in the same signal group combination and adding up the calculated cross-correlation values, a combination selection unit selecting the signal group combination in which a sum of the cross-correlation values is a maximum, and a position computation unit computing a position of each object by matching the signal groups in the selected signal group combination to the objects.
Abstract:
A method, system and computer program product for intelligent tracking and transformation between interconnected sensor devices of mixed type is disclosed. Metadata derived from image data from a camera is compared to different metadata derived from radar data from a radar device to determine whether an object in a Field of View (FOV) of one of the camera and the radar device is an identified object that was previously in the FOV of the other of the camera and the radar device.
Abstract:
The disclosure relates to a phase shifter having a first mode of operation and a second mode of operation, the phase shifter comprising a mixer stage configured to mix an oscillator signal with an analog signal to provide a phase shifted signal, switching circuitry and a controller arranged to provide the analog signal to the mixer stage as a voltage in the first mode of operation and as a current in the second mode of operation.
Abstract:
A radar sensing system includes at least one transmitter, at least one receiver and a processor. The at least one transmitter transmits a power shaped radio signal. The at least one receiver receives radio signal that includes the transmitted radio signal reflected from targets in the environment. The received radio signal is provided to the processor. The processor samples the received radio signal during a plurality of time intervals to produce a sampled stream. The different time intervals of the plurality of time intervals will contain different signal levels of radio signals reflected from the targets. The processor also selects a particular time interval of the plurality of time intervals that is free of samples of radio signals reflected off of the targets that are closer than a first threshold distance from an equipped vehicle.
Abstract:
Embodiments of a target-tracking radar and methods for responding to fluctuations in target SNR are generally described herein. In some embodiments, the target-tracking radar may be configured to determine whether a target can be considered a point target based on the SNR of received signals and off-boresight error estimates. Measurement-variance estimates generated from the SNR are provided to a target-state estimator when the target is determined to be a point target. When the target is determined not to be a point target, the measurement-variance estimates generated from SNR are not used by the target-state estimator. This may allow targets to be engaged at increased range.
Abstract:
A radar system having a transmitter for transmitting a series of radio frequency (RF) pulses with sequential, incrementally changing carrier frequencies. A receiver receives energy from multiple scattering points of an object reflecting such transmitted RF pulses. The received energy from each one of such scattering points includes a series of radio frequency (RF) pulses corresponding to the transmitted pulses delayed in time, .tau., from the transmitted pulses an amount proportional to the range to such scattering point and shifted in frequency from the carrier frequency an amount proportional to the velocity of such scattering point. The receiver includes a heterodyning section, responsive to a range tracking error signal, .epsilon..sub.R, and a velocity tracking error signal, .DELTA..sub.VEL, for producing a series of pulsed signals for each one of the scattering points. Each one of the pulsed signals for any given scatterer sequentially changes in phase, .phi., at a rate, .DELTA..phi./.DELTA.T, related to the range to the scattering point producing such one of the pulsed signal series. A processor, responsive to each of the series of pulsed signals produced by the heterodyning section, unambiguously determines from the frequency spectrum thereof the range tracking error signal, .epsilon..sub.R, and velocity tracking error signal, .DELTA..sub.VEL, for each of the scattering points as well as the range centroid.
Abstract:
A probe acquisition and display system is disclosed featuring one simple trol for acquiring, tracking, and instantaneously locking for a missile control radar. The system provides for fast initial target acquisition and re-acquisition in the presence of intentional or unintentional interference. A dual trace oscilloscope display is provided with radar tracking (range) gate and a probe is used to touch a target on the display by a radar operator.
Abstract:
A horizontal miss distance filter system (220) is provided for inhibiting resolution alert messages from an air traffic alert and collision avoidance system (210) to a pilot's display (230). The horizontal miss distance filter employs a parabolic range tracker (10) to derive a range acceleration estimate (11) utilized to discriminate intruder aircraft (110) having non-zero horizontal miss distances. The horizontal miss distance calculated from the range data provided by the parabolic range tracker is compared with a bearing based horizontal miss distance provided by a bearing based tracker (22). The smaller of the two calculated horizontal miss distances defines a projected horizontal miss distance which is compared with a threshold value. Any resolution alert for intruder aircraft whose projected horizontal miss distance is greater than the threshold will be inhibited unless it is determined that the encounter involves a maneuver of one of the aircraft. As many as five maneuver detectors (50, 52, 56, 58 and 64) may be employed to assess whether the encounter involves a maneuver. If any of the maneuver detectors establish the occurrence of a maneuver, then a resolution alert provided from the TCAS system (210) will not be inhibited.
Abstract:
A filter for tracking the ground signal return in an FM/CW radio altimeter. The filter has a variable band pass frequency response which is adjusted as a function of the altitude measured by the altimeter. The control means of the filter respond to altitude measurements in digital format.