摘要:
A needle-shaped body protrudes from a cantilever made of Si. Furthermore, the rear face of the cantilever is coated with aluminum having a Fermi level higher than that of Si. The cantilever is dipped into an aqueous silver nitride solution containing the ions of Ag serving as a second metal. The electrons of Si flow out to the aqueous silver nitride solution due to the existence of the aluminum, and Ag nanostructures are precipitated at the tip end of the needle-shaped body. A probe for tip-enhanced Raman scattering in which the Ag nanostructures are fixed to the tip end of the needle-shaped body is manufactured. The sizes and shapes of the Ag nanostructures can be controlled properly by adjusting the concentration of the aqueous silver nitride solution and the time during which the cantilever is dipped into the aqueous silver nitride solution.
摘要:
Provided is a method of fabricating a near-field optical probe adapted to a near-field scanning optical microscopy and a near-field information storage device, in which a cantilever and an optical tip are provided in one body and the optical tip is arranged to face the upper portion of the substrate. High-concentrated boron ions are implanted into an uppermost silicon layer of a silicon on insulator (SOI) substrate, and a silicon layer into which boron ions are implanted while the silicon inside the tip is etched to form the hole to act as an etch stop layer, thereby easily removing the silicon inside the tip even with the cantilever exposed, and simplifying the process due to the simultaneous fabrication of the cantilever and the tip.
摘要:
A probe assembly suited for use in a scanning probe microscope (SPM) system includes a cantilever have an attachment to a main body portion. A suitable tip disposed at the free end of the cantilever provides various functions. According to various embodiments of the invention, the tip and cantilever members have active components to produce kinetic action, thus facilitating the utility of the probe assembly in various SPM applications.
摘要:
A force scanning probe microscope (FSPM) and associated method of making force measurements on a sample includes a piezoelectric scanner having a surface that supports the sample so as to move the sample in three orthogonal directions. The FSPM also includes a displacement sensor that measures movement of the sample in a direction orthogonal to the surface and generates a corresponding position signal so as to provide closed loop position feedback. In addition, a probe is fixed relative to the piezoelectric scanner, while a deflection detection apparatus is employed to sense a deflection of the probe. The FSPM also includes a controller that generates a scanner drive signal based on the position signal, and is adapted to operate according to a user-defined input that can change a force curve measurement parameter during data acquisition.
摘要:
The present invention relates to the use of direct-write lithographic printing of proteins and peptides onto surfaces. In particular, the present invention relates to methods for creating protein and peptide arrays and compositions derived therefrom. Nanoscopic tips can be used to deposit the peptide or protein onto the surface to produce a pattern. The pattern can be dots or lines having dot diameter and line width of less than 1,000 nm. The tips and the substrate surfaces can be adapted for the peptide and protein lithography.
摘要:
A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals.Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.
摘要:
Described is a device for use in scanning probe microscopy and to a method for manufacturing same. The metallic device has a single body with two parts, wherein the second part has a submicrometric point that defines a nanoscale apex. Also provided is a method for manufacturing a high optical efficiency probe for scanning probe microscopy.
摘要:
A platinum-platinum silicide modified silicon composite tip apex, and a method for forming the aforesaid tip apex are disclosed, where a metallic precursor solution and a silicon probe are reacted to form a local platinum nano-structure, which could be precisely controlled with local selectivity, and a local platinum silicide layer is formed between the platinum nano-structure and the silicon probe with an atmospheric microwave annealing (a-MWA) process conducted as well, largely enhancing the conductivity of the tip and spatial resolution of the field detection in field sensitive scanning probe microscopy. In addition to exemption from a stray-field effect and thus having better image quality, the platinum silicide-containing probe could more efficiently enhance the interfacial electron transfer efficiency as compared to the probe tip having only a platinum nano-structure, so that the probe could be applicable to a controlled conductive probe having high spatial resolution.
摘要:
A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.
摘要:
A method for attaching a conductive particle to the apex of a probe tip comprises the steps of: moving the apex of a probe tip close to a conductive particle and applying a bias voltage between the probe tip and the conductive particle so that the conductive particle can permanently attach to the apex. The method uses only a bias voltage to transfer and attach conductive particles to the apex of a probe tip, and no surface treatment of the probe tip is required.