Abstract:
An apparatus includes a heat exchange member at least partially defining a passageway, and structure defining a first plurality of holes and a second plurality of holes. The first and second pluralities of holes provide fluid communication from the passageway to the exterior of the apparatus, i.e., to the atmosphere. A blower is operatively connected to the heat exchange member and configured to blow air into the passageway. The apparatus is configured such that, when the heat exchange member is sufficiently positioned with respect to a campfire, air exiting the first plurality of holes is directed downward and away from the campfire and air exiting the second plurality of holes has an upward velocity component.
Abstract:
A biomass or bio-fuel combustion system is provided utilizing oxygen as the source of combustion. The system generally includes a primary combustion chamber defining an internal space for receipt of the biomass and a directional oxygen injector positioned within the combustion chamber and having a plurality of injection nozzles for injecting oxygen into the internal space, preferably at an angle relative to a longitudinal axis of the combustion chamber. A transfer chamber extends from the primary combustion chamber to a secondary combustion chamber for further combustion of any remaining particulates. A cooling and exhaust system extends from the secondary combustion chamber for drawing off and condensing out any exhaust and moisture contained in the remaining exhaust particulates. A method of burning a biomass of bio-fuel with producing nitrogen dioxide is also disclosed.
Abstract:
Provided is a system for enhancing combustion in a kiln, including a kiln combustion chamber disposed within the kiln, the kiln combustion chamber having an atmosphere therein; a main burner for heating the atmosphere; a calciner assembly for providing a substance to be heated into the kiln combustion chamber; a precalciner including a precalciner combustion chamber disposed within the precalciner for receiving a biomass fuel for combustion in the precalciner combustion chamber, the precalciner combustion chamber in communication with the kiln combustion chamber; and a precalciner oxygen injector in fluid communication with the precalciner combustion chamber for providing a first oxygen stream into the biomass fuel for the combustion. A related apparatus and method for enhancing combustion with oxygen and biomass fuel are also provided.
Abstract:
A wood stove that includes a hollow cylindrical outer skin with an coaxially aligned, insulated inner fire box. Located below the fire box is a fresh air inlet and an air control valve that controls the flow of fresh air into the stove's primary and secondary chambers. Surrounding the fire box are three longitudinally aligned air conduits that extend from the air inlet to an upper ledge located below a secondary combustion chamber. During use, the fresh air inside the air conduits is heated. Disposed transversely inside the outer jacket and above the primary chamber is a combustor assembly that includes a lower fin plate, a perforated intermediate plate and a perforated upper plate. During use, fuel is added to the fire box which undergoes initial combustion and produces hot gases and fumes that travel upward towards the chamber assembly. The air control valve controls flow of fresh air into the primary chamber only, both chambers, or into only the secondary chamber.
Abstract:
This invention relates to a combustion system. The combustion system includes a fireplace which has a fire base, a primary combustion zone for pyrolysising and/or combusting a biomass fuel, and a secondary combustion zone for combusting gases and/or particulate matter produced from the pyrolysis and/or combustion of the biomass fuel. The combustion system also includes an exhaust flue, the exhaust flue extending to a position near to, or adjacent, the secondary combustion zone and/or the fire base. The invention may be particularly suitable for use in relation to wood burners, either by retrofitting to existing wood burners or by incorporating into new wood burners.
Abstract:
An improved fire grate may provide fresh oxygen rich air to a secondary combustion zone, created by the improved fire grate, of a combustion chamber where a combustion gas stream is typically oxygen starved assisting in the burning process of incompletely burned particulates and reducing other harmful emissions. A baffle plate may be introduced in the secondary combustion zone to increase a combustion chamber temperature, encourage mixing of oxygen starved air with oxygen rich air and increase a residence time of the combustion gas within the combustion chamber. These aspects of the baffle plate promote more efficient burning of the biomass/fuel. Additionally, log lighter(s) may be disposed in the secondary combustion zone to increase a temperature of the combustion chamber for the purposes of reducing harmful emissions. The improved fire grate may be horizontally and vertically adjusted to fit within different sized fireplace combustion chambers.
Abstract:
The invention is a novel Top-Lit-Updraft cook stove with internal forced primary and secondary air, designed to burn biomass. The cook stove is specifically designed to cleanly burn biomass. The stoves design innovations include a cylinder-within-cylinder design to provide heated, forced secondary to the burner area right below the burner. The burner design addresses limitations in previous cookstove burner design by implementing a bluff body design to direct syngas to the secondary air jets, improving mixing and combustion of volatile gases.
Abstract:
The invention is directed to an optimized two-chamber eductor based incinerator system. The two-chamber optimized incinerator system includes a primary and a secondary combustion chamber, the system having a single fuel fired burner located in one of the secondary combustion chamber, or the eductor. The system also includes an eductor connecting the primary combustion chamber to the secondary combustion chamber, the eductor creating a recirculation flow through the first and the second combustion chambers.
Abstract:
A desulphurization and decarbonisation apparatus includes (a) a starter for starting a reaction between an electropositive metal and sulphur oxides and carbon dioxide of a flue gas; (b) a first reaction chamber with a cooling unit for reducing the sulphur oxides and the carbon dioxide of the flue gas in an exothermic reaction with the electropositive metal; (c) a second reaction chamber for generating a first suspension including suspended carbon containing reaction products and sulphur containing reaction products by extracting solid reaction products of the first reaction chamber in a solvent; (d) a third reaction chamber for oxidizing the first suspension to generate a second suspension including suspended carbon containing reaction products and oxidized sulphur containing reaction products; and (e) a separator for separating the oxidized sulphur containing reaction products from the suspended carbon containing reaction products.