Abstract:
The control apparatus for a compression ignition type engine includes a plurality of cylinder inner pressure sensors that detect pressure in each cylinder, and a combustion control unit. The combustion control unit corrects a target fuel injection amount of each cylinder by an injector based on a deviation between a predicted combustion period that is a period from an ignition timing by an ignition plug to a predetermined mass combustion timing and that is obtained based on a preset combustion model, and an actual combustion period that is a period from the ignition timing by the ignition plug to an actual combustion timing and that is obtained based on cylinder inner pressure, such that the period from the ignition timing by the ignition plug to the predetermined mass combustion timing, which is the timing when fuel having a predetermined mass ratio combusts, is equalized in each cylinder.
Abstract:
An internal combustion engine of the present invention is an internal combustion engine equipped with port injectors. Further, the internal combustion engine has an ISC passage that connects an upstream side and a downstream side of a throttle valve in an intake passage, and an ISC valve that regulates an amount of air flowing in the ISC passage. A control device of the present invention performs valve opening control that makes an opening degree of the ISC valve an opening degree larger than a reference opening degree when request torque required by the internal combustion engine is smaller than estimated torque that can be generated in the internal combustion engine, and sets a timing for fuel injection from the port injector at an opening timing of an intake valve of a cylinder in which the port injector is installed during the valve opening control.
Abstract:
A distributor is configured with an outer housing that has a first portion and a second portion. The first portion and the second portion are adjustable in angular orientation relative to each other. Movement of the second portion relative to the first portion changes ignition timing in the distributor. The movement can be caused by rotation of a thumbwheel such that ignition timing can be changed without mechanical tools. The first and second portions also can comprise visual or tactile markings such that ignition timing can be changed without a timing light. The outer housing can be used in multiple applications simply by changing a length of a shaft housing member that houses a distributor shaft and a gear that is mounted to the distributor shaft.
Abstract:
A machine having an internal combustion engine includes a camshaft wheel rotatably driven by a crankshaft of the engine. The camshaft wheel includes a plurality of circumferentially spaced teeth. A first engine angle indicator is positioned among the circumferentially spaced of the camshaft wheel and is one of a missing tooth and an additional tooth. A second engine angle indicator is positioned among the circumferentially spaced teeth of the camshaft wheel less than about 90 degrees from the first engine angle indicator. The second engine angle indicator is also one of a missing tooth and an additional tooth. A camshaft wheel sensor produces a pulsetrain in response to detection of the plurality of circumferentially spaced teeth and additional teeth. An electronic control module is configured to determine a location of the first engine angle indicator and the second engine angle indicator based on the pulsetrain, and determine a startup engine angle based on a timing separation between features of the pulsetrain.
Abstract:
A very high performance digital ignition system is disclosed which includes a precision angular position sensor within the distributor of an internal combustion engine (or otherwise coupled to the engine to sense its angular position) to provide accurate timing information which is applied to gating means for selectively passing bursts of triggering pulses having, in the exemplary embodiment, a 7-to-1 duty cycle ratio. The selected burst of pulses are applied to a driver circuit which provides power amplification to energize the primary circuit of an ignition coil. An alternative mode of operation is also disclosed which simulates a conventional make and break ignition system to effect a service mode. In the service mode of operation, a single pulse is issued to the ignition coil upon the occurrence of the first or second pulse of the pulse burst after the angular position sensor has sensed that a cylinder firing operation should be instituted. As a result, ordinary timing and diagnostic instruments may be used during the service mode of operation to very accurately establish the ignition timing during normal, burst mode operation.
Abstract:
A control device for a spark ignition internal combustion engine, the engine including a throttle valve, an exhaust valve, and a spark timing device, the control device comprising a first linkage adapted to be operatively connected to the throttle valve, a second linkage adapted to be operatively connected to the exhaust valve, a third linkage adapted to be operatively connected to the spark timing device, and a control linkage interconnecting the first, second, and third linkages for providing coordinated control of the throttle valve, the exhaust valve, and the spark timing device.
Abstract:
A misfire detection device for an internal combustion engine includes a storage device and processing circuitry, the storage device stores first mapping data corresponding to a case where a warm-up process of a catalyst provided in an exhaust passage of an internal combustion engine is being executed, and second mapping data corresponding to a case where the warm-up process is not being executed, and each of the first mapping data and the second mapping data uses a rotation waveform variable as an input and defines a mapping that outputs a misfire variable that is a variable related to a probability misfire has occurred. The rotation waveform variable is a variable indicating a difference between a plurality of values of an instantaneous speed variable respectively corresponding to a plurality of different minute angular intervals.
Abstract:
An engine includes a turbocharger, an air bypass valve, a wastegate valve, and an EGR apparatus. The engine also includes an ISC passage that connects an upstream side and a downstream side of a throttle valve in an intake passage, and an ISC valve that adjusts an amount of air flowing through the ISC passage. A control apparatus for the engine performs valve opening control to set an opening of an ISC valve at a larger opening than a reference opening when a required torque required by the engine is smaller than an estimated torque that can be generated by the engine, and closes the air bypass valve and the wastegate valve for a fixed period following completion of the valve opening control when an EGR valve of a low pressure EGR apparatus is opened during execution of the valve opening control.
Abstract:
An engine ignition control apparatus for controlling ignition of a multi-cylinder, 4-cycle engine includes dual ignition coils for controlling ignition timing of the respective cylinders during engine operation. The engine ignition control apparatus includes a stroke determination unit for determining a stroke based on crank pulses and on an output signal of an intake pressure sensor. The engine ignition control apparatus also includes an ignition map allocation unit for allocating ignition maps to the respective cylinders of two ignition systems, each having a pair of cylinders with a same phase, before the stroke determination. The ignition map allocation unit also allocates ignition maps independently to each of the respective cylinders after the stroke determination. The engine ignition control apparatus also includes an ignition timing calculation unit for calculating ignition timing of the respective ignition coils based on the ignition maps allocated to the respective cylinders.