Abstract:
A very high performance digital ignition system is disclosed which includes a precision angular position sensor within the distributor of an internal combustion engine (or otherwise coupled to the engine to sense its angular position) to provide accurate timing information which is applied to gating means for selectively passing bursts of triggering pulses having, in the exemplary embodiment, a 7-to-1 duty cycle ratio. The selected burst of pulses are applied to a driver circuit which provides power amplification to energize the primary circuit of an ignition coil. An alternative mode of operation is also disclosed which simulates a conventional make and break ignition system to effect a service mode. In the service mode of operation, a single pulse is issued to the ignition coil upon the occurence of the first or second pulse of the pulse burst after angular position sensor has sensed that a cylinder firing operation should be instituted. As a result, ordinary timing and diagnostic instruments may be used during the service mode of operation to very accurately establish the ignition timing during normal, burst mode operation.
Abstract:
A digital ignition system is disclosed including a precision angular position sensor within the engine distributor or in cooperation with another rotary engine part providing accurate timing information applied to gating means selectively passing bursts of triggering pulses having a 7-to-1 duty cycle ratio. The bursts are applied to a driver circuit providing power amplification energizing the coil primary. An alternative mode is also disclosed simulating a conventional make and break ignition system for a service mode. In the service mode, a single pulse is issued to the coil upon the first pulse of the pulse burst after the angular position sensor senses that a cylinder firing operation is required. Thus, ordinary timing and diagnostic instruments may be used during the service mode to accurately establish ignition timing during normal, burst mode operation. A distributorless embodiment is also disclosed in which individual cylinder timing is obtained from individual disk tracks carrying a plurality of circular tracks between individual light sources and sensors. Each cylinder has its own high voltage system, the triggering pulses being directed selectively thereto by gates controlled by timing information from the disk angular position. A plurality of disks may be used for a more rigid and reliable structure.
Abstract:
A very high performance digital ignition system is disclosed which includes a precision angular position sensor within the distributor of an internal combustion engine (or otherwise coupled to the engine to sense its angular position) to provide accurate timing information which is applied to gating means for selectively passing bursts of triggering pulses having, in the exemplary embodiment, a 7-to-1 duty cycle ratio. The selected burst of pulses are applied to a driver circuit which provides power amplification to energize the primary circuit of an ignition coil. An alternative mode of operation is also disclosed which simulates a conventional make and break ignition system to effect a service mode. In the service mode of operation, a single pulse is issued to the ignition coil upon the occurrence of the first or second pulse of the pulse burst after the angular position sensor has sensed that a cylinder firing operation should be instituted. As a result, ordinary timing and diagnostic instruments may be used during the service mode of operation to very accurately establish the ignition timing during normal, burst mode operation.