Abstract:
A method of controlling fuel injection timing in a compression ignition engine including at least one cylinder. The method includes monitoring a parameter indicative of a commanded operating speed of the engine corresponding to an engine throttle notch and monitoring a parameter indicative of the actual operating speed of the engine. When the commanded engine speed exceeds the actual engine speed, the fuel injection timing for the engine may be advanced to reduce emissions.
Abstract:
The present invention relates to an engine control device and aims to improve engine efficiency by operating the engine in an area where fuel consumption is small (good) and to allow keeping high responsivity of the engine. The object can be achieved by operating to match at a point on a target torque line of a torque diagram and operating an electric motor when a matching point moves on the target torque line in a direction that a load applied to the engine output shaft becomes large.
Abstract:
A governor system is provided for limiting a degree of throttle travel of a throttle as a function of rotational speed of a drive axle. The governor system includes a governor shaft rotatably supported by the drive axle and operably interconnected to internal components of the drive axle for varying a feedback torque, a governor arm fixed for rotation with the governor shaft, a throttle cable interconnected with the governor arm for applying a first pulling force to the throttle and an accelerator cable resiliently interconnected with the governor arm to apply a second pulling force to the governor arm. The second pulling force induces rotation of the governor arm for applying a torque on the governor shaft. The torque balances with the feedback torque of the governor shaft for limiting the second pulling force as a function of the rotational speed of the drive axle.
Abstract:
A signal generator for an internal combustion engine for obtaining precise information on a rotational direction of the engine when the engine runs at extremely low speed, comprising: a rotor having a first series of reluctor corresponding to a cylinder of the engine, and a second series of reluctor having a predetermined phase relationship relative to the first series of reluctor; and a first sensor and a second sensor that detect the first series of reluctor and the second series of reluctor, respectively of the rotor to generate pulses, wherein a positional relationship between the first and the second series of reluctors, and a positional relationship between the first and the second sensors are set so that a difference occurs in a phase relationship between an output pulse of the first sensor and that of the second sensor in forward rotation and in reverse rotation of the engine.
Abstract:
The invention includes a target-engine-speed acquisition element that acquires a target engine speed necessary to reduce engine speed, thereby stopping the engine at a target stop position; a crank-angle acquisition element that acquires a crank angle indicative of the position of a crankshaft; and a target-engine-speed correction element that corrects the target engine speed according to the acquired crank angle. Because the target engine speed is corrected according to the crank angle, the engine can be stopped at the target stop position even if the friction in the engine, the electric motor, etc. varies, the temperature or viscosity of the lubricating and cooling oils varies, or the vehicle is accelerated or decelerated during the reduction of the engine speed.
Abstract:
In a digital mixer including a display, cursor controls, an increase/decrease control, and a plurality of channel strips for controlling parameters of input channels associated therewith, on a control panel, the channel strips each having a selection switch, an assignment switch is provided for assigning any one parameter among the parameters of the input channel to the increase/decrease control, so that where operation of the increase/decrease control is detected, when no selection switch has been operated, a value of a parameter displayed at the position of the cursor is changed in accordance with the operation of the increase/decrease control, while when any selection switch has been operated, a value of a parameter assigned to the increase/decrease control among parameters of an input channel corresponding to a channel strip having the selection switch is changed.
Abstract:
A stabilizer system creates a temporary droop to stabilize a governor for an internal combustion engine and reduce permanent droop and hunting of the engine. The governor adjusts the position of a throttle in response to engine speed to achieve a desired engine speed. The stabilizer system temporarily applies a force on the governor that initially resists sudden movement of the governor arm, and causes a temporary speed droop. The initial resistance of the stabilizer system helps prevent the governor from overshooting the desired speed and hunting. The temporary droop is then removed to permit the governor to achieve the desired speed to help prevent permanent droop.
Abstract:
The present invention relates to an apparatus and method for rapid flash-like volatilization of high and low vapor pressure components from liquid or solid emanators which is in contact with a point or localized heat source. Vaporization is promoted by a geometrically small electrically resistive heating element with variable activation for pulsed or cyclic heating of an emanating surface containing the volatile components. The apparatus is primarily directed towards the treatment of residential air for fragrancing, odor elimination, treatment of insects or pests, air sanitization, air and surface antibacterial or antimicrobial treatment, or other ambient air or surface modification by way of gas or vapor distribution.
Abstract:
A method providing solution of both of the problem of black smoke during the engine startup period and the problem of undershooting and hunting at the settling time. By adding at least an integral term QI to a basic injection quantity, feedback control of a fuel injection quantity of an engine is carried out. An initial integral term QI0 , which is used during the engine startup, is predetermined. During the engine startup period, the integral term QI is set as null0null until an engine revolution number Ne reaches a predetermined startup revolution number Nes. When the Ne reaches the Nes, the initial integral term QI0 is used as the QI. The QI0 is preferably determined on the basis of one of, or both of, a water temperature and an I atmospheric temperature. The Nes is preferably a value close to, or equal to, an idling revolution number Nei.
Abstract:
Apparatuses and methods for delivering fuel to at least two combustion chambers of an engine. A fuel controller receives a first fuel quantity signal indicative of a first desired quantity of fuel to be delivered to each combustion chamber of the engine during a combustion cycle. The fuel controller transmits at least one second fuel quantity signal as a function of the first fuel quantity signal, and transmits at least one third fuel quantity signal as a function of the first fuel quantity signal. The second and third fuel quantity signals are indicative of a respective second and third desired quantities of fuel to be delivered during a combustion cycle. The sum of the fuel quantities corresponding to the second fuel quantity signals transmitted during a combustion cycle are less than the first desired fuel quantity.