Abstract:
The present invention provides a novel internal combustion engine design and methods for using the same. The internal combustion engine of the present invention may include two rotors on which the pistons and cylinders and pistons are mounted, respectively. A plurality of cylinders mounted on a cylinder rotor, and a plurality of pistons mounted on a piston rod rotor, where the arrangements of the pistons and cylinders are complementary and each piston is paired with one of the cylinders. The cylinder rotor and the piston rod rotor may be position at oblique angle relative to one another, such that their central axes are located on a same plane, but the axes are not coaxially aligned and intersect on that plane.
Abstract:
The present invention provides a novel internal combustion engine design and methods for using the same. The internal combustion engine of the present invention may include two rotors on which the pistons and cylinders and pistons are mounted, respectively. A plurality of cylinders mounted on a cylinder rotor, and a plurality of pistons mounted on a piston rod rotor, where the arrangements of the pistons and cylinders are complementary and each piston is paired with one of the cylinders. The cylinder rotor and the piston rod rotor may be position at oblique angle relative to one another, such that their central axes are located on a same plane, but the axes are not coaxially aligned and intersect on that plane.
Abstract:
Fluid working reciprocating devices are described, including internal combustion engines, compressors and pumps, and how such devices may transfer power to electric generators or turbines. Devices can be within casings which may be “snapped into” larger machinery, such as vehicles, aircraft or marine craft. A number of arrangements for pistons and cylinders of unconventional configuration are described, mostly intended for use in IC engines operating without cooling. Included are toroidal combustion or working chambers, some with fluid flow through the core of the toroid, a single piston reciprocating between a pair of working chambers, tensile valve actuation, tensile links between piston and crankshaft, energy absorbing piston—crank links, crankshafts supported on gas bearings, cylinders rotating in housings, injectors having components which reciprocate or rotate during fuel delivery. In some embodiments pistons may rotate while reciprocating. High temperature exhaust emissions systems are described, including those containing filamentary material.
Abstract:
A rotary engine assembly having a three dimensional and substantially cylindrical shaped outer casing. A plurality of pistons are mounted in circumferentially traversable fashion within the casing, each including a male feature extending from one end and a recess defined within an opposing piston end and within which the male feature seats at selected stages during a rotary combustion cycle associated with the pistons. A valve is operable with each of the pistons and in order to communicate, to the associated piston, at least one air intake port and exhaust port extending through the casings and communicable with the pistons during discrete stages of the combustion cycle. A plurality of ratchet plates are operably engaged to the pistons and traversable therewith, the ratchet plates engaging and actuating in rotary fashion a central crankshaft. An oil feed line is associated with a central location of the engine assembly, the oil being disbursed through centrifugal force throughout the pistons and associated contact surfaces and recollecting in gravity fashion within a lowermost disposed oil pan.
Abstract:
An internal combustion engine is provided. The engine includes a housing (9) having at least first and second pairs of chambers (20) formed in the housing. Each chamber extends from the exterior of the housing to a predetermined point therein. The first pair of chambers being aligned with the housing along a first axis and the second pair of chambers being aligned within the housing along a second axis extending substantially normal to the first axis. The engine further including a plurality of piston assemblies (6). Each chamber having one of the piston assemblies rigidly fastened thereto. A cylinder (1) is reciprocally mounted on an elongate cylinder pin assembly (2). The cylinder pin assembly extending within the housing and disposed between the cylinders for reciprocating the cylinders along a predetermined stroke length and relative to the fixed piston assemblies in an opposed manner during operation of the engine. The cylinder pin assembly having two axes of rotation. The engine also including a power takeoff shaft (12) coupled to an end of the cylinder pin assembly for transmitting energy generated by operation of the engine.
Abstract:
Non-symmetrical port timing techniques in combination with the 90 degree phase difference between the pumping and combustion chamber of the two stroke migrating combustion chamber engine variant are disclosed as a special cycle of operation which allows a high degree of self supercharging and attendant performance advantages. Other embodiments include; protected fuel injection provisions, externally located induction rotor valves/counterweights to achieve better volumetric efficiency and complete dynamic balance and a technique to improve engine mechanism durability.
Abstract:
A two stroke internal combustion engine having an intake piston which feeds air to an adjacent power piston. Both the intake piston and the power piston are held in oscillating cylinder assemblies and the piston rods are integral with the pistons so that the piston rod is always in line with the piston. The cylinder assemblies are both supported by trunnions and the air from the intake cylinder assembly is fed through an opening in the center of the two trunnions between the intake cylinder assembly and the power cylinder assembly. Preferably the rod portion of the intake piston and rod assembly is shorter than the rod portion of the power piston and rod assembly.
Abstract:
Structure and method are disclosed for providing timed valving in which a nutating plate having an opening defined therethrough moves relative to at least one other nominally static plate having a complementary opening defined therethrough, the nutating plate at one portion of the nutating travel bringing the opening defined therethrough in alignment with the complementary static opening and in another portion of the nutating movement positioning such opening therethrough in a spaced, sealing relationship relative to the complementary static opening. Either the nutating or nominally static plate may be utilized in pairs such that a sandwiched relationship between one type of plate and the other exists. The walls of the opening in the static plate are angularly disposed with respect to the walls of the opening defined in the nutating plate and steadily converge in the direction toward the nutating plate thereby restricting the opening in the static plate at the face adjacent to the nutating plate, with the angular disposition and convergence being configured to reduce turbulent flow during opening and closing of the valving structure. Timing of the opening and closing of the valving structure may be adjusted relative to the drive shaft so as to provide opening and closing cycles of selected portions of an entire rotation.
Abstract:
This invention refers to a piston machine, most particularly an internal-combustion machine, in which the cylinder wall performs a rotating motion round its own axis. Apertures on the cylinder wall allow it to act as a rotating slide valve, so that no valve system is needed. In the first example, the stroke movement of the piston is converted to the rotating motion of the cylinder wall (which on the same time serves as the axle of the machine) through bolts which slide or roll in linear guide-slits in the cylinder wall and curved guide-tracks on the stationary outer part of the machine. The use of the curved guide-tracks allows the adaptation of the time-law for the volume change in the working chamber, to the needs of the mechanics, thermodynamics and reaction kinetics. In the same rotating cylinder are installed two pistons of equal mass which fulfil an exactly symmetrical opposite motion, so that no free accelerating forces exist and therefore no vibrations appear on the machine. In the second example the stroke movement of the piston is converted to the rotating motion of the axle through a crank and two universal joints. The relative position of the axis of the crank and the axis of the cylinder determine the length of the stroke and in consequence its power. The crank's bearing position can vary correspondingly to the cylinder during the function of the machine, so that its power is continuously variable and even its working direction can be reversed without stopping and by constant rotating speed.
Abstract:
A novel internal combustion cycle and internal combustion engine operating thereon. Expansion of the hot combustion gases is controllably achieved in a primary combustion/expansion chamber and a secondary expansion chamber in a manner to reduce engine exhaust pressures to essentially atmospheric or below. The chambers are defined by two members movable with respect to each other within an engine block volume. Porting and fluid flow control is accomplished through the motion of the moving members. Embodiments include the use of a suction chamber which achieves subatmospheric exhaust pressures and which, in conjunction with a pressure-pumping chamber, achieves a "push-pull" effect on the fluid in the engine. Unique porting of the fuel/air mixture is provided and it includes, if desired, means to vary the fuel/air ratio during the cycle. The engine of this invention exhibits performance characteristics associated with the usual four-stroke cycle engines.