Abstract:
The invention is a combined motor that combines or integrates electric and hydraulic power producing technologies into a single compact motor by means of common or shared rotor and stator elements. The invention allows optimized power, torque, performance and energy usage in electric and electric-hybrid vehicles and offers reduced weight and lower production costs due the use of common or shared components. The combined motor's electric and hydraulic power producing elements are preferably coaxial and coplanar, permitting axial compactness and enabling efficient space utilization in the vehicle. In typical electric vehicle drive cycles disproportionately large energy losses occur during the launch acceleration and brake energy recovery modes of vehicle torque demand. The combined motor increases overall efficiency by substituting high-efficiency hydraulic torque for low-efficiency electric torque during these modes. These peak efficiency substitutions conserve battery energy during launch acceleration, maximizing the state of charge to extend driving range or runtime.
Abstract:
The systems, methods and apparatuses described herein provide a footwear hydraulic system for harvesting power generated by pressing a foot on a surface and providing a cushion for the impact. In certain aspects, a hydraulic system for a footwear may comprise at least one chamber with a first and second compartments separated by an elastic membrane. The first compartment may be filled with gas and the second compartment may be filled with liquid. The gas may provide impact cushion and transient energy storage, and the liquid may pressured to push a generator to produce energy. The pressure may be generated by pressing the footwear on a surface and/or the elastic membrane of the chamber trying to restore its shape.
Abstract:
An engine for propelling vehicles on land, in the air and on the water. The engine is able to extract energy from a same fuel twice, including extracting a first amount of energy with a gas turbine and a second amount of energy by burning the fuel in a combustion engine.
Abstract:
An exhaust aftertreatment system for treating an exhaust gas feedstream of an internal combustion engine includes a catalytic converter, a fluidic circuit and a Stirling engine. The Stirling engine is configured to transform thermal energy from a working fluid heat exchanger to mechanical power that is transferable to an electric motor/generator to generate electric power. The Stirling engine is configured to transform mechanical power from the electric motor/generator to thermal energy transferable to the working fluid heat exchanger.
Abstract:
Disclosed herein is an apparatus and method for liquefied natural gas (LNG) carrier propulsion. In the apparatus and method, the propulsion of an LNG carrier is done by only a single main diesel engine and has construction to promptly cope with emergencies caused by malfunction of the main diesel engine. The propulsion apparatus for an LNG carrier comprising a boil-off gas re-liquefaction apparatus for re-liquefying boil-off gas generated in LNG storage tanks to return re-liquefied boil-off gas back to the LNG storage tank comprises a single main diesel engine, a propulsion shaft separably connected to the main diesel engine, and an electric motor for propulsion separably connected to the propulsion shaft and supplied with power intended for operation of the boil-off gas re-liquefaction apparatus.
Abstract:
In a control method of an internal combustion engine exhaust gas control system which is applied to a hybrid vehicle that is powered by an internal combustion engine and an electric motor, an exhaust throttle valve, provided downstream of an exhaust gas control catalyst, is controlled to reduce its opening amount to a target opening amount when it is determined that warm-up control of the internal combustion engine needs to be executed. Next, a target injection quantity of fuel necessary to increase the temperature of exhaust gas flowing into the internal combustion engine to a target exhaust gas temperature is calculated. Then, assist torque from the electric motor is adjusted so that the sum of torque from the internal combustion engine when the fuel injection quantity has been set to the target injection quantity and the assist torque substantially equals a required torque.
Abstract:
A split serial-parallel hybrid dual-power drive system, comprised of two or more than two separation drive systems allowing independent operation to respectively drive the load, or all loads driven individually are incorporated in a common frame to drive land, surface, underwater transportation means or aircraft, industrial machines and equipment or any other load drive by rotational kinetic energy.
Abstract:
A system is disclosed including a primary engine that provides vehicle propulsion and a secondary engine that drives a generator to provide auxiliary power. The system further includes a first exhaust gas passageway from the primary engine and a second exhaust gas passageway from the secondary engine. The system further includes an emission treatment device including an exhaust inlet to treat exhaust from the primary and secondary engines. The system further includes an exhaust routing device that selectively routes exhaust from the first passageway or the second passageway to the exhaust inlet. The exhaust routing device at least partially blocks the first passageway or the second passageway from fluid communication with the exhaust inlet.
Abstract:
A system for converting potential energy into heat including a tower configured to contain a fluid and to permit the formation of a substantially nitrogen-free combustion chamber defined by the tower and the surface of the fluid in the tower and at a pressure less than ambient, a first tower outlet in fluid communication with a first fuel valve configured to regulate a flow of the fluid out of the tower, an oxygen source in fluid communication with an oxygen valve in fluid communication with an oxygen inlet in fluid communication with the tower, a source of combustible fuel including hydrogen in fluid communication with a fuel valve in fluid communication with a fuel inlet in fluid communication with the tower, and an ignition source positioned so that it resides within the combustion chamber and is configured to initiate a reaction between oxygen and fuel.
Abstract:
An energy conversion apparatus and method using recovered energy sources including motor vehicle kinetic energy (deceleration and shock) and wind resistance, supplemented by liquefied air transferred to the vehicle and by solar radiation thereto. The energy sources are combined, as available, to drive a compressor for supplying intake working fluid of a motor vehicle prime mover, wherein liquefied air provides pre-compression cooling of an atmospheric air portion of the working fluid. The liquefied air is made by recovered energy, stored and transferred between vehicles and between vehicles and stationary sites. In a hybrid version of the vehicle, exhaust heat from a combustion engine part of the prime mover increases working fluid temperature in a gas expander part, thereof; the engine and expander operating independently or together for improved vehicle propulsion efficiency.