Abstract:
A method of making a component includes: depositing a metallic powder on a workplane; directing a beam from a directed energy source to fuse the powder in a pattern corresponding to a cross-sectional layer of the component; repeating in a cycle the steps of depositing and fusing to build up the component in a layer-by layer fashion; and during the cycle of depositing and melting, using an external heat control apparatus separate from the directed energy source to maintain a predetermined temperature profile of the component, such that the resulting component has a directionally-solidified or single-crystal microstructure.
Abstract:
A polycrystalline silicon column is provided. The polycrystalline silicon column includes a plurality of silicon grains grown along a crystal-growing direction. In the crystal-growing direction, the average grain size of the silicon grains and the resistivity of the polycrystalline silicon column have opposite variation in their trends, the average grain size of the silicon grains and the oxygen content of the polycrystalline silicon column have opposite variation in their trends, and the average grain size of the silicon grains and the defect area ratio of the polycrystalline silicon column have the same variation in their trends. The overall average defect area ratio of the polycrystalline silicon column is less than or equal to 2.5%.
Abstract:
The present disclosure provides a polycrystalline silicon ingot. The polycrystalline silicon ingot has a vertical direction and includes a nucleation promotion layer located at a bottom of the polycrystalline silicon ingot, and silicon grains grown along the vertical direction, wherein the silicon grains include at least three crystal directions. The coefficient of variation of grain area in a section above the nucleation promotion layer of the polycrystalline silicon ingot increases along the vertical direction.
Abstract:
A method of fabricating a poly-crystalline silicon ingot includes: (a) loading a nucleation promotion layer onto a bottom of a mold; (b) providing a silicon source on the nucleation promotion layer in the mold; (c) heating the mold until the silicon source is melted into a silicon melt completely; (d) controlling at least one thermal control parameter regarding the silicon melt continually to enable the silicon melt to nucleate on the nucleation promotion layer such that a plurality of silicon grains grow in the vertical direction; (e) controlling the at least one thermal control parameter to enable the plurality of the silicon grains to continuously grow with an average grain size increasing progressively in the vertical direction until entirety of the silicon melt is solidified to obtain the poly-crystalline silicon ingot, wherein the nucleation promotion layer is loaded by spreading a plurality of mono-Si particles over the bottom of the mold.
Abstract:
A silicon member for a semiconductor apparatus is provided. The silicon member has an equivalent performance to one fabricated from a single-crystalline silicon even though it is fabricated from a unidirectionally solidified silicon. In addition, it can be applied for producing a relatively large-sized part. The silicon member is fabricated by sawing a columnar crystal silicon ingot obtained by growing a single-crystal from each of seed crystals by placing the seed crystals that are made of a single-crystalline silicon plate on a bottom part of a crucible and unidirectionally solidifying a molten silicon in the crucible.
Abstract:
An apparatus to purify a melt is disclosed. A first portion of a melt in a chamber is frozen in a first direction. A fraction of the first portion is melted in the first direction. A second portion of the melt remains frozen. The melt flows from the chamber and the second portion is removed from the chamber. The freezing concentrates solutes in the melt and second portion. The second portion may be a slug with a high solute concentration. This system may be incorporated into a sheet forming apparatus with other components such as, for example, pumps, filters, or particle traps.
Abstract:
The present invention relates to a high-output apparatus for manufacturing a polycrystal silicon ingot for a solar cell, and more particularly, to an apparatus for manufacturing a polycrystal silicon ingot by means of heating and melting raw silicon in a vacuum chamber, and then cooling the molten silicon, wherein the apparatus comprises: a plurality of crucibles arranged so as to be horizontally separated from one another within the vacuum chamber, and in each of which raw silicon is filled for manufacturing polycrystal silicon ingots; heating means provided at the outside of each of the crucibles so as to heat each crucible and melt the raw silicon filled therein; and cooling means for cooling the crucibles, so as to enable the silicon melted by the heating means to be cooled in one direction and be formed into polycrystal ingots.
Abstract:
The present invention relates to methods for rapid crystallization of amino acids, drug molecules, proteins and DNA/peptides. One method for rapid crystallization of functional group-containing molecules selected from the group consisting of amino acids, drug molecules, proteins and DNA/peptides includes (A) providing at least one metal or metal oxide in particulate or thin film form to provide (a) selective nucleation sites for crystallization of the functional group-containing molecules due to interactions of their functional groups and metal surfaces or engineered metal surfaces and (b) a microwave-transparent medium to create a thermal gradient between the metal surfaces or engineered metal surfaces and a warmer solution containing functional group-containing molecules to be crystallized, and (B) conducting microwave heating to cause the functional group-containing molecules to be crystallized.
Abstract:
A directional solidification furnace includes a crucible for holding molten silicon and a lid covering the crucible and forming an enclosure over the molten silicon. The crucible also includes an inlet in the lid for introducing inert gas above the molten silicon to inhibit contamination of the molten silicon.
Abstract:
An apparatus for producing multicrystalline silicon ingots by the induction method comprises an enclosure, which includes means for start-up heating of silicon and a cooled crucible enveloped by an inductor. The crucible has a movable bottom and four walls consisting of sections spaced apart by vertically extending slots, means for moving the movable bottom, and a controlled cooling compartment arranged under the cooled crucible. The inside face of the crucible defines a melting chamber of a rectangular or square cross-section. The walls of the cooled crucible extend outwards at least from the inductor toward the lowest portion of the cooled crucible to thereby expand the melting chamber, and the angle β of expanding the melting chamber is defined by the equation β=arctg[2·(k−1.35·10 3·b)/d], where d is the dimension of the smaller side of the rectangle or of the side of the square of the cross-section of the melting chamber at the inducer level, b is the dimension of the adjoining side of the cross-section of the melting chamber at the inducer level, k is an empirical coefficient, which is 1.5 to 2. The apparatus makes it possible to decrease silicon melt spills and to increase the quality of multicrystalline silicon thus produced.