摘要:
An aluminum member exhibits improved alkali resistance with respect to an anodic oxide coating. The highly alkali-resistant aluminum member includes a material that includes aluminum or an aluminum alloy, an anodic oxide coating that is formed on the surface of the material, and a coating layer that is formed on the anodic oxide coating, and includes a siloxane glass component in a ratio of 90 mass % or more, wherein the coating layer has a thickness of 0.5 to 5.0 μm and a coating mass of 0.4 to 5.0 g/m2.
摘要:
An electrolytic process, an electrolytic solution and electrolytic assembly are disclosed, for anodizing in one main step non-ferrous metallic parts, or their alloys to form a uniform coating. The electrolytic solution is free of toxic or harmful chemicals. Examples of treatable metals include aluminum, cast aluminum, magnesium, hafnium, tantalum, titanium, vanadium, and zirconium. The treatment is a one-step process since the cleaning and coating of the nonferrous metals are performed in the same electrolytic cell or tank and solution, preferably using the same electrical device for both actions. No preliminary steps like degreasing, de-smutting or activation are needed due to the absence of toxic acids or salts in the process. The process is therefore eco-friendly, easy to perform and provides excellent results. The non-ferrous metallic parts once coated can be used in the automotive or aircraft industries.
摘要:
A process is disclosed for minimizing the difference in thermal expansivity between a porous anodic oxide coating and its corresponding substrate metal, so as to allow heat treatments or high temperature exposure of the anodic oxide without thermally induced crazing. A second phase of higher thermal expansivity than that of the oxide material is incorporated into the pores of the oxide in sufficient quantity to raise the coating's thermal expansion coefficient. The difference in thermal expansion between the anodic oxide coating and underlying metal substrate is reduced to a level such that thermal exposure is insufficient for any cracking to result. The second phase may be an electrodeposited metal, or an electrophoretically deposited polymer. The second phase may be uniformly deposited to a certain depth, or may be deposited at varying amounts among the pores.
摘要:
This application relates to a part that includes a metal oxide layer having pore structures. In some embodiments, dye molecules having aromatic rings can be disposed within at least one of the pore structures. Additionally, the at least one pore structures can include dispersion molecules, where the dispersion molecules form non-covalent interactions with the dye molecules. By forming non-covalent interactions between the dye molecules and the dispersion molecules, the aromatic rings of the dye molecules are prevented from forming other non-covalent interactions with other dye molecules. Additionally, techniques for chemically stabilizing the color dye bath for dyeing anodized parts are also described.
摘要:
A method for producing an aluminium component having a coloured surface, and comprises the steps of anodizing the surface of the component and applying the colouring component by electrolysis. The method is characterized in that the electrolyte comprises an Sn salt and a further salt of a divalent metal. Through the combination of two or more metal salts in the electrolytic colouring of anodized layers, a dense and intensely coloured coloration can be obtained on the aluminium surface.
摘要:
The invention relates to traceable metallic products, methods of uses and methods of making same. The metallic products may be made traceable for integrity purposes, identification purposes, counterfeit avoidance and the like. The invention also relates to metallic supports for nanostorage of various compounds and samples.
摘要:
An aluminum member exhibits improved alkali resistance with respect to an anodic oxide coating. The highly alkali-resistant aluminum member includes a material that includes aluminum or an aluminum alloy, an anodic oxide coating that is formed on the surface of the material, and a coating layer that is formed on the anodic oxide coating, and includes a siloxane glass component in a ratio of 90 mass % or more, wherein the coating layer has a thickness of 0.5 to 5.0 μm and a coating mass of 0.4 to 5.0 g/m2.
摘要:
A method of coating a metal article is disclosed that includes immersing a metal article having an exterior anodized layer in a bath containing a chemically active corrosion inhibitor, and applying a voltage to the article during the immersing, the voltage driving the chemically active corrosion inhibitor from the bath into the exterior anodized layer. An article is also disclosed that has a substrate comprising a metal, and a porous anodized layer formed on an exterior surface of the substrate that is infiltrated with a chemically active corrosion inhibitor, the anodized layer having an inward-facing region and an outward-facing region, the anodized layer having a greater concentration of chemically active corrosion inhibitors in the inward-facing region than in the outward-facing region.
摘要:
A method for dye-free coloring of one-time anodic aluminum oxide surface is revealed. First provide a substrate containing aluminum. The substrate containing aluminum is anodized once at room temperature. The anodizing process includes a step of applying a pulse signal on the substrate containing aluminum for a first period of time. Thus a porous aluminum oxide layer is formed on surface of the substrate containing aluminum. The pulse signal includes a part with positive voltage and a part with negative voltage. Then a metal layer is deposited on the surface of the porous aluminum oxide layer. The porous aluminum oxide layer has a first interference wavelength. Next perform a linear regression of the first interference wavelength versus the first period of time. The absolute value of the slope of the regression line obtained ranges from 1.8 to 38.5. The absolute value is positively correlated with the positive voltage.
摘要:
Provided is a method for obtaining a cooking container comprising the following steps: producing a vessel having an aluminium outer face and an inner face, performing anodisation on at least the outer face of the vessel to obtain an anodic coating having pores. At least one colouring step is carried out on the anodised outer face after anodisation, the colouring step or steps implements at least one metal salt deposited at the bottom of the pores of the anodic coating by electrochemical technique. Also provided is a culinary article or an electric cooking appliance comprising a cooking container obtained according to the abovementioned method.