Abstract:
A manufacturing method includes a first pulverization step of compressively pulverizing a manganese oxide-containing material containing at least manganese, calcium, silicon, iron, and phosphorus, which is used as a raw material, to form a composite in which a compound phase of nCaO.P2O5 is combined with at least one phase of a spinel phase and a calcium ferrite phase, which are ferromagnetic materials, and produce a first pulverized manganese oxide-containing material containing the composite; a first magnetic separation step of separating the first pulverized manganese oxide-containing material produced in the pulverization step into a magnetic substance and a non-magnetic substance under a magnetic force; and a step of recovering the non-magnetic substance separated in the first magnetic separation step as a manganese raw material.
Abstract:
Provided is a method for producing cathode copper. The method comprises a smelting step including feeding sulfidic copper bearing material and oxygen-bearing reaction gas into a suspension smelting furnace, to produce blister copper, a fire refining step including feeding blister copper into an anode furnace to produce molten anode copper, an anode casting step to produce cast anodes, a quality checking step for dividing cast anodes into accepted cast anodes and rejected cast anodes, an electrolytic refining step including subjecting accepted cast anodes to electrolytic refining in an electrolytic cell to produce cathode copper and as a by-product, spent cast anodes, and a recycling step for recycling anode copper of rejected cast anodes and anode copper of spent cast anodes.
Abstract:
Gallium is zone refined in a stationary, vertical, double annulus refiner. Impure gallium is contained between walls of a first annulus that are made of a material that does not impart impurities to the gallium. At least one of the walls is made of a flexible material. A cooling fluid is circulated through a second annulus enveloping the first annulus. The gallium is zone refined by moving through the gallium ingot one or more molten zones formed by radio frequency waves from at least one reciprocating radio frequency heating induction coil. After the necessary number of passes, the ingot is cropped without introducing contaminants and refined gallium with purities between 79 and 89 is recovered. LEC single crystal GaAs made with the so refined gallium has very uniform electrical characteristics.
Abstract:
A method and system is used to process slag material to yield by-products including a finished iron rich product and a finished low iron fines product. The by-products may include a finished high iron product and a finished medium iron product. The method and system include size classifying the material into a plurality of sized groups prior to using magnetic separation to separate at least one of the sized groups into two portions having differing magnetic susceptibilities. The method and system may include more than one phase of size classifying the material into a plurality of sized groups and using magnetic separation to separate at least one of the sized groups into portions, where the average size of the material remaining after one phase is reduced prior to the subsequent phase.
Abstract:
A unique sequence of steps is provided to reduce contaminants along one or more surfaces and faces of gold evaporative sources without deleteriously impacting the structure of the gold evaporative sources. Edges are deburred; contaminants are successfully removed therealong; and surface smoothness is substantially retained. The resultant gold evaporative source is suitable for use in evaporative processes as a precursor to gold film deposition without the occurrence or a substantial reduction in the likelihood of spitting by virtue of significantly reduced levels of contaminants, in comparison to gold evaporative sources subject to a standard cleaning protocol.
Abstract:
A unique sequence of steps is provided to reduce contaminants along one or more surfaces and faces of gold evaporative sources without deleteriously impacting the structure of the gold evaporative sources. Edges are deburred; contaminants are successfully removed therealong; and surface smoothness is substantially retained. The resultant gold evaporative source is suitable for use in evaporative processes as a precursor to gold film deposition without the occurrence or a substantial reduction in the likelihood of spitting by virtue of significantly reduced levels of contaminants, in comparison to gold evaporative sources subject to a standard cleaning protocol.
Abstract:
Purification process for chromium metal is conducted on chromium metal powder which has been compacted without additives at a pressure of at least 50,000 psi (35.times.10.sup.7 Pa) into a compacted body having a critical diffusion dimension of less than or equal to 25 mm. The purification process uses a hydrogen gas treatment at a temperature of 1200.degree. C. to 1600.degree. C. for a period of 2 hours to 10 hours using 0.8 m.sup.3 per Kg chromium metal of hydrogen gas or more. The hydrogen treated chromium metal compacted body is then further treated under vacuum at a pressure less than or equal to 100 .mu.m of Hg (15 Pa) at 1200.degree. C. to 1600.degree. C. for 2 hours to 10 hours. The combined hydrogen and vacuum treatment reduces the oxygen, carbon, sulfur and nitrogen impurities in the chromium metal and results in a chromium metal suitable for metallurgical and electronic applications.
Abstract:
A process is disclosed for producing a solid material which, in some cases, may have a resultant purity of 99.999% or better which comprises contacting the solid material at a temperature approaching the melting point of the solid material with a purifying agent which is substantially nonreactive with the solid material to cause the impurities in the solid material to enter the material. After cooling, the purified solid material may be separated from the purifying agent and the impurities therein by leaching.
Abstract:
This invention relates to a method of purifying niobium containing an impurity having a significant diffusion rate above about 1000.degree. C. which comprises vapor depositing a film of yttrium (Y) upon the surface of the niobium to be purified in a vacuum greater than about 10.sup.-4 torr and at an elevated temperature above about 1000.degree. C. (preferably between about 1200.degree. C. and 1400.degree. C.) for a time sufficient to cause migration of impurities from the niobium and binding of the impurities by the yttrium metal. The process of the invention, in it presently preferred embodiment can be accomplished by bringing the surface of shaped niobium article into close proximity with the yttrium metal under the appropriate process conditions.