Abstract:
A method of producing substitute natural gas (SNG) includes providing a gasification reactor having a cavity defined at least partially by a first wall. The reactor also includes a first passage defined at least partially by at least a portion of the first wall and a second wall, wherein the first passage is in heat transfer communication with the first wall. The reactor further includes a second passage defined at least partially by at least a portion of the second wall and a third wall. The method also includes coupling the cavity in flow communication with the first and second passages. The method further includes producing a first synthetic gas (syngas) stream within the cavity. The method also includes channeling at least a portion of the first syngas stream to the first and second passages.
Abstract:
A controlled zone gasification reactor for a plasma assisted gasification reaction system is disclosed for converting fuel, such as, but not limited to, biomass, to syngas to replace petroleum based fuels used in power generation. The system may be a modular system housed within a frame facilitating relatively easy transportation. The system may include a reactor vessel with distinct reaction zones that facilitate greater control and a more efficient system. The system may include a syngas heater channeling syngas collected downstream of the carbon layer support and to the pyrolysis reaction zone. The system may also include a syngas separation chamber configured to produce clean syngas, thereby requiring less filtering. The system may further include an agitator drive assembly that prevents formation of burn channels with in the fuel.
Abstract:
The ash content of raw coals, lignite, and other carbonaceous materials is reduced by leaching the high-ash material with an aqueous acidic waste product produced by a Fischer-Tropsch reaction. The acidic aqueous waste is mixed with coal and process conditions are described. The claim takes advantage of using otherwise uneconomic coal, lignite or other carbonaceous material by upgrading the material to a suitable feedstock for combustion in a power plant or gasifier.
Abstract:
Substantially sulphur-free fuel gas is produced from coal by gasification of particles of coal with a steam/oxygen mixture at an upstream end of a bed of fluidized particles containing an alkaline earth metal oxide, sulphur from the coal being fixed in the particles as alkaline earth metal sulphides. The bed particles travel generally downstream towards a regenerator, and at the downstream end, oil is injected into the bed and gasified to compensate for the reduced coal concentration at the downstream end whereby to avoid dilution of the fuel gas. Bed material from the downstream end is contacted with oxygen or air to convert sulphides to oxides, SO2 being liberated and recovered and the oxide-containing regenerated particles are returned to upstream end of the bed.
Abstract:
In a fluid coking process in which coke from the coker is passed to a heater and then to a gasifier and in which part of the heat for the heater is supplied by the gases from the gasifier, ungasified coke from the bottom of the gasifier is conveyed through a riser to the heater to supply additional heat and thence back to the coker whereby strength of the coke is increased by fresh coke deposition and in which all the oxygen is injected into the lower gasifier bed thereby eliminating possibility of oxygen breakthrough. The same results can be accomplished by passing the coke from the gasifier directly back to the coke reactor and eliminating the coke stream from the upper heater bed to the reactor.
Abstract:
Methods for fractional catalytic pyrolysis which allow for conversion of biomass into a slate of desired products without the need for post-pyrolysis separation are described. The methods involve use of a fluid catalytic bed which is maintained at a suitable pyrolysis temperature. Biomass is added to the catalytic bed, preferably while entrained in a non-reactive gas such as nitrogen, causing the biomass to become pyrolyzed and forming the desired products in vapor and gas forms, allowing the desired products to be easily separated.
Abstract:
Disclosed is a cyclonic gasifier and cyclonic gasification method. The cyclonic gasifier and cyclonic gasification method involve a chamber having a first portion proximal to a first end and a second portion proximal to a second end, introducing a first fuel to the first portion of the chamber, introducing a second fuel to the chamber; and introducing a first oxidant to accelerate the velocity of the first fuel and swirl the first fuel from the first portion toward the second portion.
Abstract:
A char 7 feed rate at a rated point determined from a relationship between a current water vapor 3 flow rate and a current raw material 5 charge rate to a gasification furnace 1 is multiplied by a proper number determined from a relationship between a current gasification furnace 1 temperature and a current bed material 4 circulated rate to calculate an actual char 7 feed rate. A subtraction is performed between a gross heat value of the char 7 flowing into the combustion furnace 2 determined on the basis of the calculated char 7 feed rate and a heat value required for keeping a top of the combustion furnace 2 at a commanded temperature determined from a relationship between the commanded temperature and an air flow rate in the furnace 2 to determine a heat value required for keeping the combustion furnace 2 at the commanded temperature. An auxiliary fuel operation rate is determined from the determined heat value to perform an advanced control for an auxiliary fuel feeder 21 and is regulated such that a difference as a result of subtraction between the commanded and detected temperatures in the top of the furnace 2 becomes zero to perform a feedback control for the feeder 21.
Abstract:
An integrated steam reformer/combustor assembly (42) is provided for use in a fuel processor (20) that supplies a steam/fuel feed mix (34) to be reformed in the assembly and a combustor feed (40) to be combusted in the assembly (42). The assembly (42) includes a housing (44,58) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (46) located in the first passage to direct the feed mix therethrough, the first convoluted fin coated with a catalyst that induces a desired reaction in the feed mix; and a second convoluted fin (50) located in the second passage to direct the combustor feed therethrough, the second convoluted fin coated with a catalyst that induces a desired reaction in the combustor feed.