Abstract:
A composition having a polymer-film composition having a compound having the structure:
wherein: each R is independently selected; each R is a C1-20 alkyl moiety, C2-22 alkenyl moiety, C6-40 cycloalkyl moiety, C6-40 cycloalkylene moiety, C2-20 alkyl glycol ether moiety, C10-C16 linear alkyl alcohol moiety, or Y—OH moiety; each Y is a C2-40 alkylene moiety, C6-40 cycloalkylene moiety, C2-20 alkylene glycol ether, or a C3-40 alkylene lactone; m is an integer ranging from 1 to 100; x is an integer ranging from 2 to 1,000; and the polymer-film composition having an oxidized polymer-film surface.
Abstract:
The invention relates to a wax composition comprising linear hydrocarbons, branched hydrocarbons and oxidized hydrocarbons, wherein the composition is characterized by a congealing point from 68° C. to 110° C., an acid number in the range of 3 to 30 mg KOH/g, a saponification number of 20 to 90 mg KOH/g and a needle penetration at 25° C. of below 15 1/10 mm. The invention further relates to an aqueous dispersion comprising the wax composition and a method of manufacture of both the wax composition and the dispersion. The wax composition can be used to fully or partially substitute Carnauba wax or Candelilla wax.
Abstract:
A thermoplastic and thermoset foam nucleation additive, which is added to a foamed material, includes a gas absorbent and a nano-compound, wherein the nano-compound and the gas absorbent are mixed to form the thermoplastic and thermoset foam nucleation additive. The gas absorbent includes a central structure and a short chain structure, wherein a first chemical bond is formed between the short chain structure and the central structure. The nano-compound includes a base structure and a long chain structure, wherein a second chemical bond is formed between the long chain structure and the base structure. A number of carbon atoms in the short chain structure is not less than 8, and a molecular weight of the long chain structure is higher than 10000 g/mole.
Abstract:
A method for producing a low viscosity polyethylene-based composition comprising melting a polyethylene-based composition; decreasing a viscosity of the polyethylene-based composition; and optionally, repeating the melting and the viscosity decreasing steps to form a low viscosity polyethylene-based composition; wherein the melting and viscosity decreasing steps are performed in a continuous process at temperature that is equal to or greater than 350° C., residence time of less than 2 min and the polyethylene-based composition is in the presence of at least one free radical generator.
Abstract:
The invention relates to a wax composition comprising linear hydrocarbons, branched hydrocarbons and oxidized hydrocarbons, wherein the composition is characterized by a congealing point from 68° C. to 110° C., an acid number in the range of 3 to 30 mg KOH/g, a saponification number of 20 to 90 mg KOH/g and a needle penetration at 25° C. of below 15 1/10 mm. The invention further relates to an aqueous dispersion comprising the wax composition and a method of manufacture of both the wax composition and the dispersion. The wax composition can be used to fully or partially substitute Carnauba wax or Candelilla wax.
Abstract:
A wet coating composition useful for coating a cellulosic fiber-based substrate is provided. The composition includes two aqueous emulsions. The first emulsion includes an oxidized paraffin/polyethylene wax and the second emulsion includes an ethylene/acrylic acid copolymer wax, ethylene/acrylic amide copolymer wax, ethylene/acrylic acid/acrylic amide copolymer wax or a mixture thereof. The oxidized paraffin/polyethylene wax has a surface energy less than or equal to 25 mN/m being substantially dispersive energy. The wet coating composition when dried forms a coating having a surface energy ranging from 20 to 60 mN/m being the sum of dispersive and polar energies. A process for treating a cellulosic fiber-based substrate with the wet coating composition, a substrate coated and articles including the coated substrate are also described. The process involves a heating step to allow migration of the coating towards a core of the cellulosic fiber-based substrate.
Abstract:
The present invention relates generally to vinylidene chloride polymer compositions. In one embodiment, a vinylidene chloride polymer composition comprises (a) a vinylidene chloride polymer formed from a monomer mixture comprising from 60 to 99 weight percent vinylidene chloride monomer and from 40 to 1 weight percent of a monoethylenically unsaturated monomer copolymerizable therewith; (b) 0.3 to 5 weight percent of an acrylic polymer based on the total weight of the polymer composition; and (c) 0.2 to 7 weight percent of at least one additive comprising (i) at least one wax in an amount of from 0.01 to 2 weight percent based on the total weight of the polymer composition, (ii) at least one polyethylene having a density greater than 0.940 g/cm3 in an amount of from 0.1 to 5 weight percent based on the total weight of the polymer composition, or combinations thereof.
Abstract:
A tribologically modified polyoxymethylene polymer composition is disclosed. The polyoxymethylene polymer composition is comprised of a polyoxymethylene polymer in combination with a tribological modifier system. The tribological modifier system may include the combination of a fluoropolymer with a high density polyethylene, such as an oxidized high density polyethylene. The particular formulation provides a synergistic blend of properties. For instance, the polymer composition not only has an excellent surface appearance when molded into articles but has excellent low friction characteristics when tested against aluminum.
Abstract:
A process for crosslinking an elastomer composition in the presence of an organic peroxide formulation is disclosed. The organic peroxide formulation may comprise additional compounds chosen from bis-, tri- and higher poly-maleimides, bis-, tri- and higher poly-citraconimides, peroxide-crosslinkable silicone elastomers, p-phenylenediamine based antiozonants, sulfur containing organic compounds which are accelerators for the sulfur curing (crosslinking) of polymers which are curable/crosslinkable by sulfur, and polysulfide polymers. Methods of manufacturing elastomer articles, methods of reducing mold-fouling, elastomer compositions, and elastomer articles made from the elastomer compositions are also disclosed.
Abstract:
Provided is a pneumatic tire which has low air permeability and undergoes a small change in air permeability due to fatigue. A pneumatic tire of the present invention contains a layer which is formed of a thermoplastic elastomer composition that is composed of (A) a modified ethylene-vinyl alcohol copolymer to which an aliphatic polyester is grafted, (B) a polyamide resin and (C) a modified rubber having an acid anhydride group or an epoxy group.