Abstract:
A discharge electrode E in an electrode chamber C is formed of a pair of electrode members 8 and 9 having lengths equal to or greater than a width of a film F. Also, the pair of electrode members 8 and 9 are disposed facing each other so as to sandwich a support member 4 there-between, which has nearly the same length as to electrode members; a gap is formed in a section in which the pair of electrode members 8 and 9 face each other; and this gap is open at a tip of the discharge electrode so as to serve as a gas pathway 15. Meanwhile, in the aforementioned support member 4, a plurality of gas guiding holes 5 are formed in a longitudinal direction thereof, and the gas guiding holes are in communication with a gas supplying system.
Abstract:
A method for producing a retardation film comprising the steps of: co-extruding or simultaneously casting a thermoplastic resin A and a thermoplastic resin B to obtain a laminated film comprising a layer of the thermoplastic resin A and a layer of the thermoplastic resin B; and uniaxially stretching the laminated film at least twice to cross a molecular orientation axis in the layer of the thermoplastic resin A and a molecular orientation axis in the layer of the thermoplastic resin B each other at almost right angles.
Abstract:
Disclosed is a method of micro/nano imprinting, which applies soft mold, pre-shaping sealing film, and soft holder arrangements to the micro/nano structure imprinting process of the curved substrates. The method of the present invention can prevent the curved surface from crumbling, which may result from high gas pressuring, and can obtain uniform imprinting pressure distribution throughout the whole curved substrate. Moreover, replicating micro/nano structures onto double-sided curve, both convex and concave, surfaces can also be achieved.
Abstract:
An atmospheric pressure glow discharge plasma treatment method, in which a gaseous mixture comprising argon, argon and helium, or argon and hydrogen, mixed with water vapor or water vapor and ketones at room temperature or a specified temperature, is introduced into a plasma reactor having a dielectric-coated electrode comprising a solid dielectric disposed on the surface of at least one of opposing electrodes, and a high-frequency voltage is applied under atmospheric pressure to generate atmospheric pressure glow discharge and excite a plasma, thereby making surface treatment of plastics or fibers disposed between the electrodes.
Abstract:
A surface treating method is described, which method comprising applying, between electrodes, a potential sufficient to cause corona discharge to occur in the presence of a gas which comprises molecules containing at least one atom selected from the group consisting of halogen atom, oxygen atom and nitrogen atom. The resultant corona discharge is applied to an object to be treated for the surface treatment of the object, said object being outside said electrodes. The excellent adhesive surface can be obtained when said object is separated from said electrodes at a distance in the range of 10 mm to 5 m.
Abstract:
A method for improving the internal surface of a gas-barrier, when required heat-shrinkable, multi-layer plastics film laminate in the form of a seamless tube having the innermost layer of olefin resin, the method including applying corona discharge employing at least two pairs of electrodes to the innermost layer from the outside of the tube having a gas sealed therein and pressed to a flat state avoiding the contact of opposed surface areas of innermost olefin resin layer with each other, the two pairs of electrodes being arranged such that one electrode of each pair is in contact with the outermost layer of the tube and the other of the same pair out of contact therewith while one electrode of one pair is kept in contact with the outermost layer of the tube with which one electrode of another pair is kept out of contact on the same side of the tube, so that the wetting tension of the innermost layer surface is increased to at least 35 dyne/cm by the corona discharge treatment.
Abstract:
Disclosed herein is a method for producing golf balls which comprises surface-treating a golf ball with atmospheric pressure plasma prior to finish coating. The resulting golf balls have a coating film which is in good adhesion to the golf ball and highly resistant to discoloration and deterioration by heat, moisture, and light. The surface treatment is by the atmospheric pressure plasma which does not need the treating apparatus to be evacuated. The surface treatment under atmospheric pressure requires only a simple treating apparatus and can be applied to any golf balls without evaporating volatile matters contained therein.
Abstract:
According to this invention, there is provided an atmospheric pressure plasma surface treatment process comprising the steps of introducing a gas in a plasma reaction apparatus having a pair of dielectric-covered electrodes having opposing surfaces on at least one of which is provided with a solid dielectric; performing plasma excitation under atmospheric pressure; and surface treating an object placed between the opposing electrodes, wherein the gas introduced is a gaseous composition consisting essentially of argon, helium and/or ketone. This process makes it possible to quickly imparting hydrophilic nature to surfaces of an object made of a plastic to be treated. The hydrophilic nature given lasts long.
Abstract:
A corona treatment of web-shaped materials or shaped bodies is performed by at least one corona electrode which has an operating region, wherein a gas and/or waste heat produced during the corona treatment is aspirated and at least partially returned to the operating region of the corona electrode.2
Abstract:
A stream of gas is forced through the pores of an object and either the gas itself or a component thereof is electrically activated through partial brush discharge such that reaction products will modify the surface of the pore walls as the gas flows through. The method avoids vacuum deposition methods as well as wet-coating methods and is applicable for either hydrophobizing or hydrophilizing objects and for improving, for example, biochemical activities or compatability of the object with a liquid to be filtered later.