Abstract:
The invention relates to a sub-aperture polishing tool, comprising a support member including an attachment feature for attachment to a sub-aperture polishing machine. At an end of the support member is a polishing head comprising: a base structure attached to or integral with the support member, the base structure being arranged to provide a non-flat surface. The polishing head also comprises an outer shell, at least part of the outer surface of which defines the working surface of the polishing tool, the outer shell being affixed to the base structure so as to enclose a cavity between the outer shell and the non-flat surface. A viscoelastic material filling the cavity, located between the outer shell and the base structure.
Abstract:
The invention describes an apparatus (1) for a cutting edge preparation of cutting tools (5), in particular of drills or milling tools or similar tools (5), in particular of hard-metal cutting tools, wherein during a relative movement the cutting tool (5) interacts in a machining fashion with a flexibly-bonded grinding body (2) that is provided with abrasive particles, the particles of the grinding body (2) influencing the edge geometry of the cutting tool (5), wherein the grinding body (2) is adapted with its dimensions substantially to the dimensions of the respective cutting tool (5) that is to be prepared and is accommodated in an exchangeable holder (4) which is arranged in a region of a processing device, in particular of a tool grinding machine, and is held such that it is machinable by the cutting tool (5) for the cutting edge preparation. Furthermore, a corresponding method and a corresponding grinding body (2) are given.
Abstract:
The device is for cleaning the inner surface of a pipe. The device has a spindle arranged to be rotated and having a front end and a rear end between which a plurality of elastic metal blades are attached both in the rotation direction of the spindle and in the direction perpendicular to the rotation direction to clean the inner surface of the pipe. The blades has a shape that is curved at at least two points such that they curve at least once towards the circumferential direction of the spindle and at least once outwards from the circumferential direction of the spindle to prevent the device from getting stuck in uneven pipe systems.
Abstract:
The device is for cleaning the inner surface of a pipe. The device has a spindle arranged to be rotated and having a front end and a rear end between which a plurality of elastic metal blades are attached both in the rotation direction of the spindle and in the direction perpendicular to the rotation direction to clean the inner surface of the pipe. The blades has a shape that is curved at at least two points such that they curve at least once towards the circumferential direction of the spindle and at least once outwards from the circumferential direction of the spindle to prevent the device from getting stuck in uneven pipe systems.
Abstract:
A gear grinding unit, capable of grinding a tooth flank of a gear to have fine surface roughness without requiring any special shaping work such as dressing, includes a threaded grinding part which is rotatable around a rotation axis (S1) and engages with a tooth of a gear to be ground. Through a rotational motion of the threaded grinding part, a tooth flank of the gear is ground. The threaded grinding part includes a plurality of flexible abrasive sheets each including a virtual circle having a diameter that equals a root diameter (DA) of the threaded grinding part and a bulge part bulging radially outward from the virtual circle. With the bulge parts of the abrasive sheets mutually shifted around the rotation axis (S1), the abrasive sheets are overlapped along the rotation axis (S1) to form the threaded grinding part.
Abstract:
An abrasive filament including a matrix of thermoplastic polymer; and a plurality of abrasive particles such as eutectic alumina zirconia particles interspersed throughout at least a portion of the matrix. Abrasive brushes including such abrasive filaments are also disclosed. Methods of deburring a substrate having at least one burr, with a brush, the brush having bristles including eutectic alumina zirconia particles and a matrix of thermoplastic polymer, wherein the method includes the steps of: contacting the substrate with at least one bristle of the brush in a contact region; and inducing relative motion between the substrate and the at least one bristle.
Abstract:
The mechanical roughening of the surface of a printing plate substrate comprising aluminum or an aluminum alloy is carried out by wet brushing with the use of a cylinder brush 1 in which brush rows 2, 3 having bundles of organic fibers 22 and metal wires 33 are arranged side by side on the surface 7. The suspension used for the wet brushing contains from 5 to 80% by weight of abrasive particles in water.