Abstract:
A method of machining a workpiece using a machine tool, the machine tool comprising a tool mount carrying a tool, a workpiece mount carrying a workpiece, a drive mechanism for moving at least one of the tool mount and the workpiece mount relative to the other, and a control arrangement for controlling the drive mechanism. The method comprises moving at least one of the tool mount and the workpiece mount with the drive mechanism under the control of the control arrangement so that the tool contacts a portion of the workpiece to commence a machining operation, and the tool then removes material from the portion of the workpiece until completion of the machining operation, the movement being such that the relative velocity between the tool and the workpiece decreases continuously during the majority of the time that the tool and the workpiece are in contact with each other during the machining operation.
Abstract:
A method for providing an edge preparation on a cutting edge of a tool by means of an edge processing operation includes clamping the tool in a processing machine for providing the edge preparation, recording as a reference value the position of the cutting edge to be processed by means of a sensor arranged on the processing machine, carrying out an edge processing operation by means of a preparation tool, recording the position of the cutting edge again by means of the sensor arranged on the processing machine and storing the position as an actual value, monitoring the edge processing operation on the basis of a comparison between the reference value and the actual value, and comparing the actual value with a desired value for material removed on the cutting edge.
Abstract:
An eyeglass lens processing apparatus includes: a setting unit which sets points on an edge of a lens, where a line on a target lens shape and passing through the first and second points intersects a line on the target lens shape and passing through the third and fourth points; and a calculating unit which: obtains a first plane including a bisection point between the first and second points and perpendicular to the first line; obtains a second plane including a bisection point between the third and fourth points and perpendicular to the second line; obtains an intersection line of the first and second planes; obtains a bevel spherical surface so that a center of the bevel spherical surface is located on the intersection line and passes through a desired edge position; and obtains the bevel path on the basis of the bevel spherical surface and target lens shape data.
Abstract:
A sensor for monitoring a conductive film in a substrate during chemical mechanical polishing generates an alternating magnetic field that impinges a substrate and induces eddy currents. The sensor can have a core, a first coil wound around a first portion of the core and a second coil wound around a second portion of the core. The sensor can be positioned on a side of the polishing surface opposite the substrate. The sensor can detect a phase difference between a drive signal and a measured signal.
Abstract:
A method for processing a surface corrects a relationship between a processing condition and a removal quantity (polished removal quantity) or a removal depth (polished removal depth) in accordance with a worked surface to obtain desired removal quantity or removal depth in processing the worked surface irrespective of the shape of the worked surface, forms a reference surface in a simple shape to obtain the relationship between the processing condition and the removal quantity or the removal depth readily, and executes such correction of the relationship between the processing condition and the removal quantity or the removal depth and such correction of unit removal shapes readily for a short time.
Abstract:
A polishing apparatus comprises a polishing member for polishing a workpiece and a manipulator for manipulating the workpiece and having a base disposed at a coordinate origin of a base coordinate system. The polishing member and workpiece define therebetween a contact surface having a contact surface coordinate system relative to an initial coordinate system defined when the polishing member and the workpiece initially contact one another at the contact surface but before a force is exerted on the contact surface to polish the workpiece. A first control device successively updates a position and attitude of the contact surface coordinator system with respect to the initial coordinate system on the basis of a deviation between preselected values of force and moment acting on the workpiece and detected values of force and moment acting at the contact surface between the polishing member and the workpiece when a force is exerted on the contact surface to polish the workpiece. A second control device successively updates a position and attitude of the contact surface coordinate system with respect to a coordinate system corresponding to the workpiece by changing a position and attitude of the workpiece. The calculating device calculates a position and attitude of the manipulator on the basis of the updated results of the first and second control devices and a position and attitude of the initial coordinate system with respect to the base coordinate system. The driving device drives the manipulator to manipulate the workpiece on the basis of the calculation results of the calculating device.
Abstract:
An electric control apparatus for an industrial robot the arm of which is actuated to carry out machining of a workpiece by means of a machining tool attached thereto. The control apparatus includes a force sensor arranged to detect reaction force acting on the tool, a memory for memorizing a maximum reaction force detected by the sensor during each machining process of the workpiece in a plurality of split sections of a teaching line, a comparator for comparing the memorized maximum reaction force with a set value indicative of a limit of reaction force acting on the tool and for producing a signal therefrom when the memorized maximum force exceeds the set value. The control apparatus is arranged to operate the robot in such a manner that the machining tool is moved along the teaching line to successively carry out machining of the workpiece in the split sections and is further arranged to ascertain as to whether or not the comparator produces the signal therefrom at each time when the tool arrives at each terminal point of the split sections for producing a control signal therefrom when applied with the signal from the comparator, thereby operating the robot in response to the control signal in such a manner that the machining tool is returned to each start point of the slipt sections to repeat deburring in the same section.
Abstract:
A method and apparatus for machining a custom-shaped dental restorative part from a blank of dental material yield the entire part in a single operation, and include a workpiece being mounted on a support member which facilitates rotation and axial movement of the workpiece. A separating disk is used for almost the entire machining operation, and an additional tool in the shape of a burr can optionally be provided to shape more elaborate pieces. The disk and burr are supported by a tool holder which is supported for movement parallel to and rotationally about an axis. The disk and burr are powered by a closed loop fluid supply arrangement. A tool velocity sensing scheme is utilized for adaptive feed and to compensate for tool wear. The machining mechanism and associated control circuitry are enclosed in a common cabinet so as to provide a mobile unit suitable for use in a dentist's office.
Abstract:
A cam grinding machine of the type in which a grinding wheel is moved toward and away from a cam shaft rotatably supported on a table, thereby to shape intake and exhaust cams of said cam shaft to predetermined profiles, the cam grinding machine comprising: means for detecting the machined condition of the cams in spark-out grinding; means for setting spark-out ending conditions separately for the intake and exhaust cams; means for judging whether the machined condition in spark-out has reached a level complying with the spark-out ending condition, separately with respect to the intake and exhaust cams; and means for stopping the spark-out when the machined condition comes into compliance with the spark-out ending condition.
Abstract:
Grinding apparatus and control system for forming non-circular punching tools comprising a grinding wheel having a cylindrical grinding surface, a rotary table with its axis parallel to the grinding wheel axis and carrying orthogonally movable slides such that one slide at a time may be actuated to generate successive flat sides of a punching tool, the table axis being positionable to define a center of rotation for an arcuate face of the punching tool which is generated upon rotation of the table, a fixture for the grinding wheel dressing tool serving to automatically define the location of the grinding wheel surface relative to the axis of the rotary table, and a computer-controlled digital system which senses the shape to be formed, parameters of the shape to be formed and which causes the slides or rotary table to be properly actuated so as to grind a punching tool of appropriate size and shape.