Abstract:
Method and arrangement for automated control of a drive train (10) of a land vehicle to be executed when ground conditions exist that impede the initiation or continuation of travel of the vehicle such as being stuck on loose or slippery ground. The automated routine induces a rocking action in the vehicle purposed to aid in freeing the vehicle and permitting desired travel out of the area. As an initial step of the routine, it is determined whether such a ground condition exists. If so, drive power is applied, via a drive train (10) of the vehicle until the drive wheel (26, 30) bogs down or productive and continuous travel is established in the vehicle. A rocking-back action is permitted by a discontinuation of the drive power to the drive wheel (26, 30) of the land vehicle until a predetermined power resumption condition occurs. Reverse power can be optionally applied at this time. Otherwise, drive power is reapplied to the drive wheel (26, 30) for another attempt at forward progress. All of these actions are controlled via an automated drive train control routine that executes the method, typically responsive to a driver-initiated signal.
Abstract:
A mode establishing section of a differential limiting control apparatus for a four wheel drive vehicle commands an automatic mode control section or a manual mode control section to output calculated clutch torques according to a signal from a mode switch operated by a driver. In an initial condition of an ignition switch turned on, the execution command is issued to the automatic mode control section, until the driver newly selects the manual mode through the mode switch. Further, when the vehicle travels at a speed higher than a preestablished threshold value, the execution command is outputted to the automatic mode control section, irrespective of the signal from the mode switch.
Abstract:
A system for controlling an automated mechanical change-gear transmission system including a processing unit for processing inputs according to predetermined logic rules to determine currently engaged and allowably engaged gear ratios and throttle positions, for changing between automatic and semi-automatic transmission modes, for issuing command output signals to non-manually controlled operators, and for temporarily selectively overriding a pre-selected transmission mode if either cruise control or power take off are activated.
Abstract:
A diagnosing apparatus for diagnosing a vehicle automatic transmission system including an automatic transmission having frictional coupling devices, and solenoid-operated valves for controlling the frictional coupling devices to shift the automatic transmission according to shift commands generated by a control device, the apparatus including a speed detector for detecting an engine speed of the vehicle, a device for determining a reference range of the engine speed within which the engine speed is expected to fall when the transmission is placed in a position selected by a shift command, a device for determining whether a predetermined running condition of the vehicle is satisfied, and a defect detector for determining whether there exists a defect associated with the automatic transmission system, depending upon whether the detected engine speed is held within or outside the determined reference range when the predetermined vehicle running condition is satisfied.
Abstract:
Method and arrangement for providing an electronic gear shift selector associated with an automatic mechanical transmission for a heavy vehicle. The gear shift selector includes a toggle switch for asserting at least one gear shift request, a counter receiving the at least one gear shift request, and a time delay for preventing communication of the at least one gear shift request from the counter until a predefined time period has passed. A method for communicating a collective gear shift request to a gear box includes asserting one or more gear shift requests with a gear shift selector, communicating the gear shift requests to a counter, determining the collective gear shift requests occurring within a predefined time period, communicating the gear shift requests occurring within the predefined time period to a gearbox.
Abstract:
Method and arrangement for automated control of a drive train (10) of a land vehicle to be executed when ground conditions exist that impede the initiation or continuation of travel of the vehicle such as being stuck on loose or slippery ground. The automated routine induces a rocking action in the vehicle purposed to aid in freeing the vehicle and permitting desired travel out of the area. As an initial step of the routine, it is determined whether such a ground condition exists. If so, drive power is applied, via a drive train (10) of the vehicle until the drive wheel (26, 30) bogs down or productive and continuous travel is established in the vehicle. A rocking-back action is permitted by a discontinuation of the drive power to the drive wheel (26, 30) of the land vehicle until a predetermined power resumption condition occurs. Reverse power can be optionally applied at this time. Otherwise, drive power is reapplied to the drive wheel (26, 30) for another attempt at forward progress. All of these actions are controlled via an automated drive train control routine that executes the method, typically responsive to a driver-initiated signal.
Abstract:
A control device for a vehicle which has a function to reduce the change-speed shock when changing the speed by controlling the transmission of the vehicle. The control device performs the switching between a manual change-speed mode in which the vehicle speed can be changed based on a change-speed command generated by manual operation and an automatic change-speed mode in which a transmission gear ratio can be controlled based on the predetermined change-speed characteristic. Thereby the reduction amount of the change-speed shock can be changed between the manual change-speed mode and the automatic change-speed mode.