Abstract:
An information processing apparatus connected to an image forming unit and a reading unit is provided. The apparatus generates image data based on document data described in a page description language, encodes the document data to be multiplexed on the image data, outputs the image data to the image forming unit, restores the multiplexed document data from the image data read by the reading unit, and saves the image data read by the reading unit and the document data restored by a restoration unit.
Abstract:
A method for reproducing an out-of-gamut spot color includes determining a color gamut for a color printer, and specifying a spot color by color coordinates in a three-dimensional color space. A first target color is determined corresponding to a color having a minimum color difference to the specified spot color, and a second target color is determined corresponding to a color on the color gamut surface having a hue value equal to a hue value of the specified spot color. A path is defined on the color gamut surface connecting the first target color and the second target color, wherein a control parameter is used to specify a relative position along the defined path. A user interface is provided enabling a user to adjust the control parameter to specify an aim color.
Abstract:
An image processing device and method for a display device are disclosed, and the image processing device includes a color gamut conversion unit; the color gamut conversion unit is configured to perform processing on an input signal inputted into the display device to allow a display operation according to a color gamut range of the display device to be converted into a display operation according to a color gamut range of the input signal when the display device displays the input signal.
Abstract:
Method, system, and graphical user interface for enabling optimal colorant job programming. A graphical user interface displays a plurality of gamut mode selectable features. One or more of the gamut mode selectable features can be selected for image processing of an image. A graphical image can be displayed within the next of the user interface based on image processing of the image, and in response to selection of a gamut mode selectable feature. The resulting displayed graphical image with the user interface can demonstrate to a user the benefit of utilizing additional colorant on the image particular pixels in the graphical image, which can benefit from the additional colorant.
Abstract:
A unit acquires first image data expressing a color of an image and second image data expressing a feature of the image. A unit color-separates the first image data into first and second color material amount data. A unit generates inverted data by inverting the second image data. A unit generates first corrected data from the first color material amount data and the inverted data and generates second corrected data from the second color material amount data and the second image data. A unit generates, based on the first corrected data, first data indicating on dot printing positions during a printing and scanning operation, generates, based on the second corrected data, second data indicating on dot printing positions in the operation, and generates, based on the first and second data, image forming data.
Abstract:
Provided is an image processing apparatus including a color conversion unit that performs color conversion to convert an original image to a luminance image and to a chromaticity image, an illumination image generation unit that generates an illumination image having an illumination component of the luminance image as a pixel value from the luminance image, a reflectance image generation unit that generates a reflectance image having a stabilized reflectance component of the luminance image as a pixel value, a luminance reproduction image generation unit that enhances the reflectance component of the luminance image to generate a luminance reproduction image reproduced with being improved visibility of the luminance image, and an inverse color conversion unit that performs conversion inverse to the color conversion performed by the color conversion unit on the luminance reproduction image and the chromaticity image.
Abstract:
Adaptive video processing for a target display panel may be implemented in or by a decoding/display pipeline associated with the target display panel. The adaptive video processing methods may take into account video content, display characteristics, and environmental conditions including but not limited to ambient lighting and viewer location when processing and rendering video content for a target display panel in an ambient setting or environment. The display-side adaptive video processing methods may use this information to adjust one or more video processing functions as applied to the video data to render video for the target display panel that is adapted to the display panel according to the ambient viewing conditions.
Abstract:
A printing system includes the following elements. An image forming unit forms an image. An image reader reads an image. A first color converter creates second image data. A second color converter creates fourth image data. A determining unit determines whether a pixel value of each of pixels in the first image data or the second image data is located inside or outside an input color gamut that is readable by the image reader. A correction unit corrects pixels located at the same position as a pixel having a pixel value located outside the input color gamut. An inspection unit performs inspection to find a defect of an image. The correction unit performs correction on the pixels located at the same position as a pixel having a pixel value located outside the input color gamut so that the inspection unit does not detect a difference between the corrected pixels.
Abstract:
In the present disclosure techniques related to display of device independent color differences are described. In examples, a color comparison graphical user interface (GUI) is operated. The GUI displays a color of a sample object. Further, the GUI displays a color of a reference object. Further, the GUI displays a device independent color difference between the sample color and the reference color.