Abstract:
A transmitter encodes an input bitstream using space-time trellis coding (STTC). The encoder includes a serial to parallel convertor to produce a first and second output bitstreams. First and second three bit shift registers are connected to produce first and second output bitstreams. A multiplier applies a code generating weight to each bit of the shift registers to encode the bitstreams. A first switch is connected between a last bit of the first shift register and a first bit of the second shift register. A second switch is connected between the second output and the first bit of the second shift register. The first set of encoded bit streams and the second set of encoded bitstreams are combined and mapped to a frequency domain.
Abstract:
A diversity transmitting/receiving apparatus and method is provided, which is implemented using space-time trellis codes (STTC) constructed from a Pseudo Noise (PN) sequence set in a Direct Sequence (DS) CDMA system. The transmitter comprises a PN sequence generator, a space-time encoder, first and second modulators, and first and second multiple transmit antennas. The space-time encoder selects two of the multiple PN sequences to construct STTC, and space-time encodes data from a data source according to the STTC to output an Wary data symbol. The two modulators modulate the space-time encoded data according to the STTC. The two multiple transmit antennas wirelessly transmit outputs of the two modulators, respectively. By applying a method using space-time coding in a DS CDMA system including multiple transmit antennas, it is possible to achieve both diversity and additional coding gain and also to reduce multiple user interference by increasing the PN sequence length.
Abstract:
Several embodiments of a space diversity trellis interleaver system are provided for communicating data over a plurality of separate communication paths in order to inhibit distortion caused by impulse noise or other correlated noise and enhance the data transmission rate of data communications. The transmitter is designed to receive a plurality of data streams from data terminal equipment (DTE), which can be one or more devices. One or more convolutional encoders, preferably trellis encoders, encode each of the data streams. In an alternative embodiment, more than one trellis encoder is used to trellis encode each data stream. Data segments from the convolutionally encoded data streams are interleaved with a switch. The plurality of interleaved convolutionally-encoded data streams are modulated and transmitted onto a respective plurality of separate communication paths. At the receiver, the plurality of data streams is received from the separate communication paths and demodulated. The data segments are de-interleaved with a switch, and then the de-interleaved data streams are convolutionally decoded with convolutional decoders, preferably trellis decoders. The de-interleaved convolutionally decoded data streams are communicated to one or more DTEs.
Abstract:
A super set of orthogonal space-time block codes is combined with set partitioning to form super-orthogonal space-time trellis codes having full diversity, enhanced coding gains, and improved rates. In communications systems, these codes are implemented by an encoder of a diverse transmitter to send an information signal to a receiver having one or more receiver elements. A decoder in the receiver decodes the encoded signal to reproduce the information signal. A method of the invention is used to generate set portioning structures and trellis structures that enable code designers to systematically design the codes of the invention.
Abstract:
A system for transmitting data over a MIMO channel has a transmitter and a receiver. In the transmitter, the input data is encoded over at least two pipes by a concatenation of at least two constituent signal-space encoders. Each constituent encoder is used to generate, in response to the input data, a sequence of symbols from a channel alphabet having at least one dimension. Each symbol of the channel alphabet includes at least one complex symbol having real and imaginary coordinates. The transmitter interleaves the coordinates of the sequence of channel alphabet symbols, and transmits (from at least two transmit antennas) the interleaved coordinates. Preferably, each constituent encoder maximizes a minimum coordinate-wise Hamming distance between members of all valid pairs of symbol sequences, maximizes a minimum Euclidean distance between members of all valid pairs of different codewords, and obeys an equal eigenvalue criterion.
Abstract:
Space-time codes for use with layered architectures with arbitrary numbers of antennas are provided such as rate k/n convolutional codes (e.g., rates higher than or equal to 1/n where n is the number of transmit antennas). Convolutional codes for layered space-time architectures are generated using matrices over the ring F[[D]] of formal power series in variable D.
Abstract:
A method of communicating data to M receiving antennas from N transmitting antennas, where M and N are integers and unequal, has the steps of sending a message to determine a number of transmit paths to be used, awaiting an acknowledgement message comprising a number of receiver paths, setting the number of transmit paths based on at least the acknowledgement message, producing data streams from outbound data based on the number of transmit paths, applying the data streams to a space/time encoder to produce encoded signals and transmitting the encoded signals from at least a portion of N transmitting antennas.
Abstract:
Apparatus, and an associated method, for selectably introducing desired levels of diversity into data communicated upon a radio communication channel to effectuate a communication service, such as a 1×EV-DV communication service. Responsive to channel conditions, the level of diversity is selected, and levels of encoding are utilized. Matching encoder and decoder apparatus are provided to sending and receiving station pairs. Encoder apparatus includes constituent encoder elements, and associated interleaver elements for interleaving data that is to be communicated by associated encoder elements. One, or more, antenna transducer elements are selectably utilized to provide spatial diversity in addition to temporal diversity.
Abstract:
A method for non-orthogonal transmission of a signal intended for a system with N sources, M relays and a single receiver, in which simultaneous transmission over a single spectral resource by the relays is simultaneous with a transmission over a single spectral resource by the sources. The method includes, for each relay: joint iterative detection/decoding of messages transmitted respectively by the sources during first transmission intervals to obtain decoded messages; detecting errors on the decoded messages; interleaving the detected error-free messages, followed by algebraic network coding including a linear combination, in a finite field of an order higher than two, of the interleaved messages to obtain a coded message, the linear combinations being independent, in pairs, between the relays; and channel coding to generate a signal representative of the network coded message and to transmit this signal during the subsequent transmission intervals simultaneously with a transmission by the sources.
Abstract:
A diversity transmitting/receiving apparatus and method is provided, which is implemented using space-time trellis codes (STTC) constructed from a Pseudo Noise (PN) sequence set in a Direct Sequence (DS) CDMA system. The transmitter comprises a PN sequence generator, a space-time encoder, first and second modulators, and first and second multiple transmit antennas. The space-time encoder selects two of the multiple PN sequences to construct STTC, and space-time encodes data from a data source according to the STTC to output an Wary data symbol. The two modulators modulate the space-time encoded data according to the STTC. The two multiple transmit antennas wirelessly transmit outputs of the two modulators, respectively. By applying a method using space-time coding in a DS CDMA system including multiple transmit antennas, it is possible to achieve both diversity and additional coding gain and also to reduce multiple user interference by increasing the PN sequence length.