Abstract:
A method for non-orthogonal transmission of a signal intended for a system with N sources, M relays and a single receiver, in which simultaneous transmission over a single spectral resource by the relays is simultaneous with a transmission over a single spectral resource by the sources. The method includes, for each relay: joint iterative detection/decoding of messages transmitted respectively by the sources during first transmission intervals to obtain decoded messages; detecting errors on the decoded messages; interleaving the detected error-free messages, followed by algebraic network coding including a linear combination, in a finite field of an order higher than two, of the interleaved messages to obtain a coded message, the linear combinations being independent, in pairs, between the relays; and channel coding to generate a signal representative of the network coded message and to transmit this signal during the subsequent transmission intervals simultaneously with a transmission by the sources.
Abstract:
A method for semi-orthogonal transmission of a signal intended for a system with N sources, M relays and a single receiver whereby the simultaneous transmission on a same spectral resource by the relays is successive and not simultaneous to a simultaneous transmission on a same spectral resource by the sources. The includes, by relay: joint iterative detection/decoding of messages transmitted respectively by the sources to obtain decoded messages, detecting errors on the decoded messages, interleaving the detected messages without errors followed by algebraic network coding consisting of a linear combination in a finite group of an order strictly higher than two of the interleaved messages to obtain a coded message, the linear combinations being independent, two by two, between the relays of the system, and formatting including channel coding to generate a signal representative of the network coded message.
Abstract:
A method for non-orthogonal transmission of a signal intended for a system with N sources, M relays and a single receiver, in which simultaneous transmission over a single spectral resource by the relays is simultaneous with a transmission over a single spectral resource by the sources. The method includes, for each relay: joint iterative detection/decoding of messages transmitted respectively by the sources during first transmission intervals to obtain decoded messages; detecting errors on the decoded messages; interleaving the detected error-free messages, followed by algebraic network coding including a linear combination, in a finite field of an order higher than two, of the interleaved messages to obtain a coded message, the linear combinations being independent, in pairs, between the relays; and channel coding to generate a signal representative of the network coded message and to transmit this signal during the subsequent transmission intervals simultaneously with a transmission by the sources.
Abstract:
A method for semi-orthogonal transmission of a signal intended for a system with N sources, M relays and a single receiver whereby the simultaneous transmission on a same spectral resource by the relays is successive and not simultaneous to a simultaneous transmission on a same spectral resource by the sources. The includes, by relay: joint iterative detection/decoding of messages transmitted respectively by the sources to obtain decoded messages, detecting errors on the decoded messages, interleaving the detected messages without errors followed by algebraic network coding consisting of a linear combination in a finite group of an order strictly higher than two of the interleaved messages to obtain a coded message, the linear combinations being independent, two by two, between the relays of the system, and formatting including channel coding to generate a signal representative of the network coded message.