Abstract:
An optical network includes multiple source, cross connect, and destination nodes. A traffic demand matrix is constructed for each possible pair of combinations of the source nodes and the destination nodes. A first energy reduction metric is determined for creating the bypass between the source node and any XC node based on the traffic demand matrix, and a second energy reduction metric is determined for creating the bypass between any XC node and the destination node using the traffic demand matrix. Then, a bypass that terminates at one of the XC nodes that has a largest energy reduction metric is created.
Abstract:
A wireless network master node periodically broadcasts beacons that specify a structure of a following fixed length superframe. Slave nodes determine a channel condition between each slave and the master. Then, the set of slaves is partitioned into subsets of slaves according to the channel conditions. The master assigns, to each slave, a transmission rate in a low to high order according to the channel conditions, and the slaves transmit data to the master in the low to high order between two consecutive beacons, wherein the subsets of slaves with a higher transmission rate also receive the data from the subsets of slaves with a lower transmission rate, and wherein a slave with a higher transmission rate includes a part of or all the data from a slave with a lower transmission rate.
Abstract:
A method estimates a wireless channel at a receiver. The signal is transmitted using narrowband orthogonal frequency division demultiplexing (OFDM) and frequency subcarriers, and the signal includes a set of data tones and a set of pilot tones. The channel and pilot tone interference are estimated based on all the pilot tones extracted from the signal and a channel model. The set of data are equalized based on the channel estimate. Data interference is detected according to the pilot interference and the equalized data tones. Subcarrier interference-to-noise ratios are determined based on the data interference. Signal strengths of the data tones are determined based on the equalized data tones, log-likelihood ratios of bits represented by the data tones are determined based on the subcarrier interference-to-noise ratios and the signal strength of the data tones.
Abstract:
A transmitter encodes an input bitstream using space-time trellis coding (STTC). The encoder includes a serial to parallel convertor to produce a first and second output bitstreams. First and second three bit shift registers are connected to produce first and second output bitstreams. A multiplier applies a code generating weight to each bit of the shift registers to encode the bitstreams. A first switch is connected between a last bit of the first shift register and a first bit of the second shift register. A second switch is connected between the second output and the first bit of the second shift register. The first set of encoded bit streams and the second set of encoded bitstreams are combined and mapped to a frequency domain.
Abstract:
Beams are used to communicate in a wireless network including mobile and stationary receivers. The network operates according to the IEEE 802.11p in wireless access to vehicular environments (WAVE). A direction from the mobile transceiver to the stationary receiver is predicted using geographic information available to the mobile transceiver. A set of signals are received in the mobile transceiver from the stationary transceiver, wherein the signals are received by an array of antennas, and wherein the signals are received using a set of beams, and wherein each beam is approximately directed at the stationary receiver. A signal-to-noise ratio (SNR) is measured for each beam, and the beam with an optimal SNR is selected as an optimal beam for communicating data between the mobile transceiver and the stationary transceiver.
Abstract:
A transmitter transmits data having a set of two or more priorities on subcarriers using orthogonal frequency division multiplexing (OFDM) symbols. The transmitter includes a media access (MAC) layer, wherein the MAC layer further includes a queue for storing data at each priority, a rate control block connected to each queue, and a physical (PHY) layer. The PHY layer further includes a channel coder for each priority, wherein each channel coder is connected to the corresponding queue to receive data, and to the rate control block to send coding information.
Abstract:
A method performs handover of a mobile station (MS from a current base station (BSC) connected to a target base station (BST) via a backbone in a Worldwide interoperability for Microwave Access (WiMAX) mobile communication network. The MS, before handover, transmits a Connection Identifier Request (CID-REQ) to the BST via the BSC, and receiving a Connection Identifier Response (CID-RSP) from the BST via the BSC. The MS, before handover, transmits a Subscriber Station (SS) Basic Capability Request (SBC-REQ), and receives a SS Basic Capability Response (SBC-RSP) from the BST via the BSC. Then, the MS transmits a Ranging Request (RNG-REQ) to the BST, and receives a Ranging Response (RNG-RSP) from the BST. During the handover, the MS transmits a Registration Request (REG-REQ) to the BST, and receives a Registration Response from the BST to establish the connection between the MS and the BST.
Abstract:
In a wireless network including a base station (BS) and a set of mobile stations (MS), a MS transmits a ranging request message to the BS, using random access, when the MS enters the cell. The ranging request message includes request MS specific information for identifying the MS. The MS receives a ranging response message broadcast from the BS, which includes response MS specific information, request and response specific information to determine whether the BS received the request, or whether a collision occurred.
Abstract:
A method for transmitting packets from a source node to a destination node via relay nodes of a wireless network. Packets are transmitted from the source node, along a route of relays nodes, to the destination node in a wireless network. Energy of the packets is accumulated only in the destination node by storing multiple versions of the packet. The packets are decoded in the destination node using the accumulated energy.
Abstract:
A method estimates a wireless channel at a receiver. The signal is transmitted using narrowband orthogonal frequency division demultiplexing (OFDM) and frequency subcarriers, and the signal includes a set of data tones and a set of pilot tones. The channel and pilot tone interference are estimated based on all the pilot tones extracted from the signal and a channel model. The set of data are equalized based on the channel estimate. Data interference is detected according to the pilot interference and the equalized data tones. Subcarrier interference-to-noise ratios are determined based on the data interference. Signal strengths of the data tones are determined based on the equalized data tones, log-likelihood ratios of bits represented by the data tones are determined based on the subcarrier interference-to-noise ratios and the signal strength of the data tones.