Abstract:
A circuit includes E-mode transistors with gate-source junction, a D-mode transistor with gate-source junction. A component generates a voltage drop between the source of the D-mode transistor and the drain of an E mode transistor provided as a signal output. A connection is made between this drain of the E-mode transistor and the gate of the D-mode transistor, and a signal input at the gates of the E-mode transistors.
Abstract:
The circuit includes an E-mode transistor with gate-source junction, a D-mode transistor with gate-source junction, a component generating a voltage drop between the source of the D-mode transistor and the drain of the E-mode transistor, and a connection between the drain of the E-mode transistor and the gate of the D-mode transistor. The gate of the E-mode transistor is provided for an input signal, and the drain of the E-mode transistor is provided for an output signal.
Abstract:
The inverter includes a driving transistor and a loading transistor having channel regions with different thicknesses. The channel region of the driving transistor may be thinner than the channel region of the load transistor. A channel layer of the driving transistor may have a recessed region between a source and a drain which contact both ends of the channel layer. The driving transistor may be an enhancement mode transistor and the load transistor may be a depletion mode transistor.
Abstract:
A novel programmable logic device is provided. Programmable switches each include a first transistor and a second transistor. The first transistor in a first programmable switch controls conduction between a first wiring and a gate of the second transistor in the first programmable switch. The second transistor in the first programmable switch controls conduction between the first wiring and a second wiring. The first transistor in the second programmable switch controls conduction between another first wiring and a gate of the second transistor in the second programmable switch.
Abstract:
It is an object to provide a logic circuit which can be operated even when unipolar transistors are used. A logic circuit includes a source follower circuit and a logic circuit an input portion of which is connected to an output portion of the source follower circuit and all transistors are unipolar transistors. A potential of a wiring for supplying a low potential connected to the source follower circuit is lower than a potential of a wiring for supplying a low potential connected to the logic circuit which includes unipolar transistors. In this manner, a logic circuit which can be operated even with unipolar depletion transistors can be provided.
Abstract:
A circuit includes a logic stage, an inverter stage, and a driver stage. The logic stage and the inverter stage are provided with current limiters, which include a D-mode feedback transistor and a component that generates a voltage drop. A feedback loop connects the source and the gate of the D-mode feedback transistor via this component. The driver stage includes E-mode transistors connected in a totem pole that drive a D-mode transistor and an E-mode transistor to connect and disconnect the load circuit.
Abstract:
In a semiconductor logic circuit, a plurality of gates are provided, each formed of a junction type field effect transistor. The junction type field effect transistor of one of the gates is directly coupled to the junction type field effect transistor of a succeeding gate. An element is provided for clamping an output voltage of the junction type field effect transistor of the one gate, which provides an input voltage for the junction type field effect transistor of the succeeding gate, to below about a forward voltage of a pn junction of the succeeding gate.
Abstract:
A power switching cell with normally on field-effect transistors comprises a current switch receiving the control input signal over an activation input and a power transistor for switching a high voltage VDD applied to its drain, to its source that is connected to the output port of the cell. The control of the gate of the power transistor whose source is floating, according to the input signal, is provided by a self-biasing circuit connected between its gate and source. The current switch is connected between the self-biasing circuit and a zero or negative reference voltage. The self-biasing circuit comprises a transistor whose source or drain is connected to the gate or source of the power transistor. The gate of this transistor is biased by a resistor connected between its gate and source, and between the current switch and the source. The transistors are HEMT transistors using GaN or AsGa technology.
Abstract:
A power switching cell with normally on field-effect transistors comprises a current switch receiving the control input signal over an activation input and a power transistor for switching a high voltage VDD applied to its drain, to its source that is connected to the output port of the cell. The control of the gate of the power transistor whose source is floating, according to the input signal, is provided by a self-biasing circuit connected between its gate and source. The current switch is connected between the self-biasing circuit and a zero or negative reference voltage. The self-biasing circuit comprises a transistor whose source or drain is connected to the gate or source of the power transistor. The gate of this transistor is biased by a resistor connected between its gate and source, and between the current switch and the source. The transistors are HEMT transistors using GaN or AsGa technology.