Abstract:
Electrostatic discharge protection circuitry includes a transistor pass-gate coupled between potential source of electrostatic discharge-driven current (“ESD current”) and an input node of a circuit block is configured provide a sufficiently resistive current path between a first current terminal and a second current terminal of the pass gate such that, when an amount of charge sufficient to cause an ESD event accumulates at the potential ESD current source, a sufficient voltage drop occurs across the pass gate such that devices coupled to the input node of the circuit block are protected from experiencing a voltage drop across them that is above a predetermined threshold voltage.
Abstract:
A first power line configured to receive a first voltage, a second power line configured to receive a second voltage which is lower than the first voltage, a first clamping unit configured to be connected to the first power line, a second clamping unit configured to be connected between the first clamping unit and the second power line, and a discharging unit configured to, when an abnormal voltage introduced through the first power line or the second power line is applied, discharge the abnormal voltage by coupling with the first clamping unit or the second clamping unit are included.
Abstract:
An electrostatic protection circuit, a display panel, and a display apparatus are disclosed. The electrostatic protection circuit comprises a switch control unit, a first electrostatic storage unit configured to store charges, and a second electrostatic storage unit configured to store charges, wherein the first electrostatic storage unit has a first terminal connected to a driving line and a second terminal connected to the switch control unit, and the second electrostatic storage unit has a first terminal connected to the switch control unit and a second terminal connected to a common electrode trace. With the first electrostatic storage unit connected to the driving line and the second electrostatic storage unit connected to the common electrode trace, the electrostatic protection circuit, the display panel, and the display apparatus according to the present disclosure can prevent leakage current on the driving line from flowing into the common electrode trace or prevent leakage current on the common electrode trace from flowing into the driving line after the switch control unit is switched off, which otherwise causes voltage fluctuation on the driving line or the common electrode trace thereby affecting the display quality.
Abstract:
A semiconductor device is provided. The device comprises: a first transistor that includes a first primary terminal, a second primary terminal and a first control terminal; a second transistor that includes a third primary terminal, a fourth primary terminal and a second control terminal; and a resistive element. The first and third primary terminal are connected to a first voltage line. The second primary terminal and one terminal of the resistive element are connected to a second voltage line. The first and second control terminal, the fourth primary terminal and the other terminal of the resistive element are connected to a node. A potential change in the third primary terminal is transmitted to the first control terminal by capacitive coupling between the third primary terminal and the node, turning on the first transistor.
Abstract:
Some embodiments include apparatus and methods using a first transistor coupled between a node and a supply node, a second transistor coupled between the node and a ground node, an electrostatic discharge (ESD) protection unit including a diode coupled between the node and an additional node, and a transistor coupled between the additional node and the supply node.
Abstract:
An integrated circuit having a CML driver including a driver biasing network. A first output pad and a second output pad are connected to a voltage pad. A first driver is connected to the first output pad and the voltage pad. A second driver is connected to the second output pad and the voltage pad. A first ESD circuit is connected to the voltage pad, the first output pad, and the first driver. A second ESD circuit is connected to the voltage pad, the second output pad, and the second driver. The first ESD circuit biases the first driver toward a voltage of the voltage pad when an ESD event occurs at the first output pad, and the second ESD circuit biases the second driver toward the voltage of the voltage pad when an ESD event occurs at the second output pad.
Abstract:
An integrated circuit having a CML driver including a driver biasing network. A first output pad and a second output pad are connected to a voltage pad. A first driver is connected to the first output pad and the voltage pad. A second driver is connected to the second output pad and the voltage pad. A first ESD circuit is connected to the voltage pad, the first output pad, and the first driver. A second ESD circuit is connected to the voltage pad, the second output pad, and the second driver. The first ESD circuit biases the first driver toward a voltage of the voltage pad when an ESD event occurs at the first output pad, and the second ESD circuit biases the second driver toward the voltage of the voltage pad when an ESD event occurs at the second output pad.
Abstract:
A grounding switch is described which operates properly even in the presence of negative voltages on a signal line. The grounding switch uses isolated field effect transistors that have their substrates tied to different voltages. The isolated field effect transistor has a gate voltage and substrate voltage which can be pulled down to a negative voltage when the signal line has a negative voltage allowing the switch to remain open even with a negative voltage.
Abstract:
A grounding switch is described which operates properly even in the presence of negative voltages on a signal line. The grounding switch uses isolated field effect transistors that have their substrates tied to different voltages. The isolated field effect transistor has a gate voltage and substrate voltage which can be pulled down to a negative voltage when the signal line has a negative voltage allowing the switch to remain open even with a negative voltage.
Abstract:
Implementations are presented herein that include an electrostatic discharge (ESD) protection circuit. The ESD protection circuit includes a first transistor and a second transistor. The first transistor has a first terminal that is coupled to a first supply line and a bulk that is coupled to a second supply line. The second transistor has a first terminal that is coupled to the second supply line, a bulk that is coupled to the first supply line and a second terminal that is coupled to a second terminal of the first transistor to define a protected node. The ESD protection circuit further includes a current limiting element that has a first terminal that is coupled to the protected node.