Abstract:
A closed plasma channel (“CPC”) superconductor which, in a first embodiment, is comprised of an elongated, close-ended vacuum conduit comprising a cylindrical wall having a longitudinal axis and defining a transmission space for containing an ionized gas of vapor plasma (hereinafter “plasma components”), the plasma components being substantially separated into regionalized channels parallel to the longitudinal axis in response to a static magnetic field produced within the transmission space. Each channel is established along the entire length of the transmission space. At least one channel is established comprised primarily of free-electrons which provide a path of least resistance for the transmission of energy therethrough. Ionization is established and maintained by the photoelectric effect of a light source of suitable wavelength to produce the most conductive electrical transmission medium. Various embodiments of the subject method and apparatus are described including a hybrid system for the transmission of alternating current or, alternatively, multi-pole EM fields through the cylindrical wall and direct current or charged particles through the stratified channels.
Abstract:
The second repeller assembly includes a flat plate and two sleeves through which the legs of a filament pass in electrically insulated manner. The clamp assembly for the filament includes a pair of strap assemblies with three straps each for electrically connecting the clamps and filament to an electrical feed. The straps are in contact with opposite flat sides of a terminal pin.
Abstract:
Devices, apparatus and methods are disclosed for non-contact pneumatic sampling and sampling of surfaces, persons, articles of clothing, buildings, furnishings, vehicles, baggage, packages, mail, and the like, for contaminating aerosols indicative of a hazard or a benefit, where the contaminating aerosols are chemical, radiological, biological, toxic, or infectious in character. In a first device, a central orifice for pulling a suction gas stream is surrounded by a peripheral array of convergingly-directed gas jets, forming a virtual sampling chamber. The gas jets are configured to deliver millisecond pneumatic pulses that erode particles from solid surfaces at a distance. In another aspect of the invention, a suction gas stream is split using an air-to-air concentrator so that a particle-enriched gas flow is directed to a particle trap and any particles immobilized in the particle trap (including any adsorbed vapors associated with the particles) are selectively analyzed to detect trace residues associated with explosives.
Abstract:
A charged particle generating method in which mode is changeable between an ion generation mode and an electron generation mode. In the ion generation mode, a raw material is supplied to a tip end of a charged particle generating electrode through a raw-material passage formed in the charged particle generating electrode. A first electric field, in which the charged particle generating electrode is positive and the charged particle extract electrode is negative, is generated to emit ions from the raw material at the charged particle generating electrode. In the electron generation mode, supplying the raw material from the raw-material supply section is stopped. A second electric field, in which the charged particle generating electrode is negative and the charged particle extract electrode is positive, is generated to emit electrons from the raw material at the charged particle generating electrode.
Abstract:
A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.
Abstract:
A Long Lifetime Cold Cathode Ionization Vacuum Gauge Design with an extended anode electrode having an axially directed tip, a cathode electrode, and a baffle structure. The axially directed tip of the anode electrode can have a rounded exterior with a diameter at least 10% greater than the diameter of the anode electrode.
Abstract:
A high-brightness, space-charge-dominated circular charged-particle beam system includes a flat circular emitter that emits charge particles to form a space-charge-dominated circular charged-particle beam. The space-charge-dominated circular charged-particle beam is emitted from the flat circular emitter with a uniform density and having a current emission being space-charge-limited, obeying the Child-Langmuir law. A diode includes at least one electrode at the flat circular emitter and at least one additional electrode that accelerates the charged particles. A beam tunnel is coupled electrically to at least one of the additional electrodes. An applied axisymmetric magnetic field focuses the space-charge-dominated circular charged-particle beam. A depressed collector collects the space-charge-dominated circular charged-particle beam.
Abstract:
A high-brightness, space-charge-dominated circular charged-particle beam system includes a flat circular emitter that emits charge particles to form a space-charge-dominated circular charged-particle beam. The space-charge-dominated circular charged-particle beam is emitted from the flat circular emitter with a uniform density and having a current emission being space-charge-limited, obeying the Child-Langmuir law. A diode includes at least one electrode at the flat circular emitter and at least one additional electrode that accelerates the charged particles. A beam tunnel is coupled electrically to at least one of the additional electrodes. An applied axisymmetric magnetic field focuses the space-charge-dominated circular charged-particle beam. A depressed collector collects the space-charge-dominated circular charged-particle beam.
Abstract:
An apparatus and a method are disclosed for rapidly controlling the rate of ion generation in an ion source. The ion source includes an ion chamber, filament-cathode, a mirror electrode, and a grid. The ion source is operable to generate an ion beam from the ionization of ion precursor gas present in the ion chamber by electrons emitted from the filament. The rate of ion generation is controlled by modifying the potential of the grid relative to the filament to control the number of electrons available for ionization between the grid and the mirror electrode. An alternative embodiment for rapidly controlling the rate of ion generation in an ion source is also disclosed. In the alternative embodiment, the ion source comprises an ion chamber having mutually opposed sides and configured to receive ion precursor gas; a filament-cathode located on one side of said ion chamber and operable to emit electrons for the ionization of the precursor gas for the generation of the ion beam; and a mirror electrode having a potential associated therewith and located on the other side of said ion chamber. The mirror electrode is connected to a circuit to vary its potential relative to said filament so as to vary the number of the electrons available in the ion chamber for ionization.
Abstract:
A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.