Abstract:
An electronic component in which a metal layer is unlikely to be peeled from a substrate includes an insulating ceramic substrate, a ceramic layer diffusion-bonded to the substrate, a metal layer including a first principal surface and a second principal surface opposed to the first principal surface, with the first principal surface diffusion-bonded to the ceramic layer, and a characteristic layer diffusion-bonded to the second principal surface of the metal layer and prepared from a ceramic material, wherein the characteristic layer varies in resistance value with respect to ambient temperature or applied voltage.
Abstract:
An electronic device and a method of fabricating an electronic device are disclosed. The device includes a body of semiconductor material, and a conductive material defining at least three conducting contacts to form respective terminals. The semiconductor material and the conducting contacts overlap at least partially to define the device, so that the electrical characteristics of the device between any pair of terminals correspond to those of a varistor. The body of semiconductor material may be a layer deposited by printing or coating. The varistor characteristics between each pair of terminals enable switching of an electrical current between one terminal and any two other terminals in such a manner that when there is a positive current into a first terminal, there is a negligible current through a second terminal at which a positive potential is applied and a positive current out of a third terminal which is held at a negative potential with respect to the second terminal. When there is a negative current outwards of the first terminal, there is a positive current into the second terminal and a negligible current through the third terminal.
Abstract:
A photoconductive switch and optical transconductance varistor having a photoconductive region e.g. a wide bandgap semiconductor material substrate between opposing electrodes. An optical waveguide is arranged to surround the photoconductive region for directing conduction-inducing radiation into the photoconductive region. And an optical diffusion element is arranged to diffuse/disperse the radiation prior to entering the optical waveguide and into the substrate, for uniformly illuminating the substrate for conduction.
Abstract:
Disclosed is a voltage sensitive resistor (VSR) write once (WO) read only memory (ROM) device which includes a semiconductor device and a VSR connected to the semiconductor device. The VSR WO ROM device is a write once read only device. The VSR includes a CVD titanium nitride layer having residual titanium-carbon bonding such that the VSR is resistive as formed and can become less resistive by an order of 102, more preferably 103 and most preferably 104 when a predetermined voltage and current are applied to the VSR. A plurality of the VSR WO ROM devices may be arranged to form a high density programmable logic circuit in a 3-D stack. Also disclosed are methods to form the VSR WO ROM device.
Abstract translation:公开了一种包括半导体器件和连接到半导体器件的VSR的一次(WO)只读存储器(ROM)器件的电压敏感电阻器(VSR)。 VSR WO ROM设备是一次写入只读设备。 VSR包括具有残留钛 - 碳键合的CVD氮化钛层,使得VSR是形成的电阻的,并且当预定的电压和电流被施加到电阻时,可以变得更小的电阻性为102,更优选为103,最优选为104。 VSR。 多个VSR WO ROM器件可以被布置成在3-D堆栈中形成高密度可编程逻辑电路。 还公开了形成VSR WO ROM器件的方法。
Abstract:
A thin film type varistor and a method of manufacturing the same are provided. The method includes: a depositing a first zinc oxide thin film at a low temperature through a sputtering method; and a forming a zinc oxide thin film for a varistor by treating the first zinc oxide thin film with heat at a low temperature in an environment in which an inert gas and oxygen are injected. Accordingly, it is possible to lower a processing temperature and simplify a manufacturing process while maintaining a varistor characteristic so as to be applied to a highly integrated circuit.
Abstract:
A method of cooling a resistor is provided. The method includes forming a first electrical insulator having a high thermal conductivity in thermal contact with an electrically resistive pathway and forming a substrate adjacent the electrical insulator. The method further includes forming a first electrical conductor having a high thermal conductivity within the second substrate and in thermal contact with the electrical insulator.
Abstract:
A thin-film resistor with a layer structure with a Ti layer and a TiN layer is described, wherein a layer thickness of the Ti layer and a layer thickness of the TiN layer are selected such that a resulting temperature coefficient of resistance (TCR) is smaller than 1000 ppm/° C.
Abstract:
The disclosure relates to an overvoltage protection means containing ZnO microvaristor particles for protecting electrical elements and a method to produce the means. Single microvaristor particles are placed in an arrangement having a monolayer thickness and are electrically coupled to the electrical element to protect it against overvoltages. Embodiments, among other things, relate to: 1-dimensional or 2-dimensional arrangements of microvaristor particles; placement of single microvaristors on a carrier; the carrier being planar or string-like, being structured, being a sticky tape, having fixation means for fixing the microvaristors, or having electrical coupling means. The monolayered overvoltage protection means allows very tight integration and high flexibility in shaping and adapting it to the electric or electronic element. Furthermore, reduced capacitance and hence reaction times of overvoltage protection are achieved.
Abstract:
An electronic element having at least a pair of electrodes is formed on a substrate. A varistor element is formed on the substrate, the varistor element including a pair of electrodes and a varistor insulating film. When a surge voltage is applied across the pair of electrodes of the varistor element, a surge current flows through the varistor insulating film. One electrode of the varistor element is connected to one electrode of the electronic element, and the other electrode of the varistor element is connected to the other electrode of the electronic element.
Abstract:
The present invention provides an electrical circuit component, specifically a passive microwave device, and a method for producing the same. In one embodiment, the present invention provides an electrical circuit component, comprising: at least one patterned resistive area on a first surface of a diamond substrate, a first patterned conductive area on the first surface of the diamond substrate, and a second patterned conductive area on a second surface of the diamond substrate. The patterned resistive area may comprise a very thin film of tantalum nitride or a very thin film of tantalum nitride and a thin film of nichrome. The patterned conductive area may comprise a layer of titanium-tungsten, a layer of gold, and optionally a layer of nickel. Alternatively, the patterned conductive area may comprise a layer of chrome, a layer of copper, a layer of gold, and optionally a layer of nickel.