Abstract:
A method for processing a three-dimensional (3D) image includes acquiring a frame of a color image and a frame of a depth image, and generating a frame by combining the acquired frame of the color image with the acquired frame of the depth image. The generating of the frame includes combining a line of the color image with a corresponding line of the depth image.
Abstract:
A volume holographic imaging system, apparatus, and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object. A 4D probing source object is illuminated to emit or scatter an optical field. A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information. A 4-f telecentric relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens. A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object. The focused 2D slice is projected onto a 2D imaging plane. The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
Abstract:
A volume holographic imaging system, apparatus and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object A 4D probing source object is illuminated to emit or scatter an optical field. A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information. A 4-ftelecentric relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens. A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object. The focused 2D slice is projected onto a 2D imaging plane. The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
Abstract:
A volume holographic imaging system, apparatus and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object A 4D probing source object is illuminated to emit or scatter an optical field. A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information. A 4-f telecentric relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens. A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object. The focused 2D slice is projected onto a 2D imaging plane. The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
Abstract:
An ophthalmic device which comprises a holographic element comprising a medium comprising a phenylboronic acid group and, disposed therein, a hologram, wherein an optical characteristic of the element changes as a result of a variation of a physical property of the medium, and wherein the variation arises as a result of interaction between the medium and an analyte present in an ocular fluid.
Abstract:
A method and display apparatus for reducing holographic speckle when displaying holographic images are described. A target image (10) is decomposed into input images (11). A first input image includes higher spatial frequency components of the target image and is imaged using a first display method (12) to generate a first holographic display image. The second input image includes lower spatial frequency components of the target image and is imaged using a second display method (12) to generate a second display image. The first and second display images are combined for display to a user. The second display method (12) is adapted to reduce holographic speckle or include no holographic speckle compared to the first holographic display method (12) thereby reducing holographic speckle in the combined display image (13).
Abstract:
An ophthalmic device which comprises a holographic element comprising a medium comprising a phenylboronic acid group and, disposed therein, a hologram, wherein an optical characteristic of the element changes as a result of a variation of a physical property of the medium, and wherein the variation arises as a result of interaction between the medium and an analyte present in an ocular fluid.
Abstract:
The present invention relates to a method for fabricating a computer-generated hologram or a holographic stereogram which can reconstruct a three-dimensional object having visualized cross-sectional surfaces, wherein the three-dimensional object composed only of surface data is processed to have the visualized cross-sectional surfaces on a given cross section thereof by adding surface data to the cross-sectional surfaces. The method includes a step (ST11) of obtaining a number of two-dimensional cross-sectional image data of a three-dimensional object, a step (ST12) of producing three-dimensional object image data composed only of surface data of the three-dimensional object from the two-dimensional cross-sectional image data obtained in the above step, a step (ST13) of cutting the three-dimensional object composed only of the surface data along a predetermined cross section, a step (ST14) of defining the shape of the three-dimensional object to be recorded as a hologram by adding surface data representing cross-sectional surfaces on the cut cross section to the same, steps (ST15)-(ST17) of defining the arrangement of the defined three-dimensional object, a hologram plane, and a reference beam to compute interference fringes on the hologram plane, and steps (ST18)-(ST20) of recording the thus computed interference fringes on a recording medium.
Abstract:
A method for fabricating a computer-generated hologram or a holographic stereogram can reconstruct a three-dimensional object having visualized cross-sectional surfaces, wherein the three-dimensional object composed only of surface data is processed to have visualized cross-sectional surfaces on a given cross section thereof by adding surface data to cross-sectional surfaces. The method includes obtaining a number of two-dimensional cross-sectional image data of a three-dimensional object, producing three-dimensional object image data composed only of surface data of the three-dimensional object from the two-dimensional cross-sectional image data obtained above, cutting the three-dimensional object surface data along a predetermined cross section, defining the shape by adding surface data representing cross-sectional surfaces on the cut cross section to the same, defining the arrangement of the defined three-dimensional object, a hologram plane, and a reference beam to compute interference fringes on the hologram plane, and recording the interference fringes on a recording medium.
Abstract:
A holographic sensor comprising a thin film polymer matrix that undergoes a change in response to a substance to be sensed, the matrix containing within its volume a set of two or more holographic recordings, each recording providing a holographic image when the sensor is illuminated, wherein the presence or appearance of each image is visible to the eye as a function of the response of the sensor to the substance to be sensed. The images provide the dynamic range of the sensor. Such a sensor can be used to provide a visible image that changes or appears to the eye in response to an analyte.