摘要:
Disclosed are methods and systems for displaying images, and for implementing volumetric user interfaces. One exemplary embodiment provides a system comprising: a light source; an image producing unit, which produces an image upon interaction with light approaching the image producing unit from the light source; an eyepiece; and a mirror, directing light from the image to a surface of the eyepiece, wherein the surface has a shape of a solid of revolution formed by revolving a planar curve at least 180° around an axis of revolution. Another exemplary embodiment provides a method for implementing a floating-in-the-air user interface, including displaying a first image in a display space of a first floating-in-the-air display, inserting a real object into the display space of the first floating-in-the-air display, locating a location of the real object within the display space of the first floating-in-the-air display, locating the real object in the display space, and providing the location as input to the floating-in-the-air user interface.
摘要:
Disclosed is a holographic display including a spatial light modulator (SLM) with pixels, the SLM pixels being on a substrate, the SLM including circuitry which is on the same substrate as the SLM pixels, the circuitry operable to perform calculations which provide an encoding of the SLM.
摘要:
Disclosed is a high resolution display on which decompressed high resolution image data is displayed, the display including pixels, the pixels being on a substrate, where circuitry is present on the same substrate as the pixels, where compressed high resolution image data which has been compressed using known data compression techniques is received by the circuitry, the circuitry being operable to perform decompression calculations which provide subsequent display of decompressed high resolution image data by the pixels of the display.
摘要:
The present invention relates to a three-dimensional security feature using a hologram which can not be counterfeited with color copying machines or diffraction grating image forming devices. The three-dimensional security feature comprises a hologram which is recorded in such a manner that it can be reconstructed to comprise at least two three-dimensional linear patterns when locally viewed, at least one of these two three-dimensional linear patterns having at least one portion which crosses the other linear pattern at the inner side and at least one portion which crosses the other linear pattern at the outer side.
摘要:
The invention relates to a security-conscious hologram which can apply a sufficient three-dimensional appearance to a reconstructed image in both its vertical and horizontal directions, and which is difficult to illegally copy and easily told from any illegal copy forged from it, and a holographic process of recording it The hologram H2 is of a combined reflection and volume type, wherein a subject image P is recorded, and minute reflection images F and O′ from a light source are recorded at least in front of, or in the rear of, the subject image P, both in a reconstructible fashion, and a viewing position E is moved along a hologram surface, so that the subject image P and the minute reflection images F and O′ are viewable at varied relative positions.
摘要:
The invention relates to a security-conscious hologram which can apply a sufficient three-dimensional appearance to a reconstructed image in both its vertical and horizontal directions, and which is difficult to illegally copy and easily told from any illegal copy forged from it, and a holographic process of recording it. The hologram H2 is of a combined reflection and volume type, wherein a subject image P is recorded, and minute reflection images F and O′ from a light source are recorded at least in front of, or in the rear of, the subject image P, both in a reconstructible fashion, and a viewing position E is moved along a hologram surface, so that the subject image P and the minute reflection images F and O′ are viewable at varied relative positions.
摘要:
The invention relates to a computer-generated hologram fabrication process that can reduce loads on computation of interference fringes for an original image including micro-characters. A visually perceivable original image 11 and a visually unperceivable original image 12 (micro-characters) are defined, and sample point sources of light P are defined at a low density on the original image 11 and at a high density on the original image 12. Interference fringes of object light coming from the point light sources on the original image 11 and reference light R are found on each computation point within an area α1 on a recording surface 20, and interference fringes of object light coming from point light sources on the original image 12 and reference light R are found on each computation point within an area α2 on the recording surface 20. The light sources that become samples are defined at a given pitch on sectional lines obtained by cutting the original images 11 and 12 by a multiplicity of sections (parallel with an XZ plane) located at a given spacing. The section-to-section spacing for the original image 12 is made narrows than that for the original image 11.
摘要:
A computer-generated hologram fabrication process that enables a plurality of original images to be observed with master-slave relations Original images 11, 12, a recording surface 20 and reference light R are defined on a computer, and a number of point light sources P11-1, . . . , P12-1, . . . as samples are defined on each original image. Given angles of spreading of object light beams emitted from individual point light sources are defined, and areas on the recording surface 20, at which object light beams emitted from point light sources defined on each original image 11, 12 with the thus limited given angles of spreading arrive, are determined as recording areas &agr;11 and &agr;12 corresponding to the original images 11 and 12. When there is an overlapping (hatched) portion in the recording areas, the overlapping portion is determined as a recording area corresponding to the master original image.
摘要:
The invention relates to a computer-generated hologram fabrication process that enables a plurality of original images to be observed with master-slave relations. Original images 11, 12, a recording surface 20 and reference light R are defined on a computer, and a number of point light sources P11-1, . . . , P12-1, . . . as samples are defined on each original image. Given angles of spreading of object light beams emitted from individual point light sources are defined, and areas on the recording surface 20, at which object light beams emitted from point light sources defined on each original image 11, 12 with the thus limited given angles of spreading arrive, are determined as recording areas null11 and null12 corresponding to the original images 11 and 12. When there is an overlapping (hatched) portion in the recording areas, the overlapping portion is determined as a recording area corresponding to the master original image. Within the area null11 there is recorded only information about the original image 11, and within the area null12 there is recorded only information about the original image 12. Upon reconstruction, the boundary portion of the master original image is enhanced.
摘要:
A system and method for generating a composite display that includes at least one static three dimensional holographic image, and dynamic and/or static two dimensional images. An object hologram includes a three-dimensional object image. A silhouette hologram includes a silhouette image of the object, and can include a diffusion screen. The object hologram overlays the silhouette hologram with the object image substantially aligned with the silhouette image. Static and/or dynamic images can be projected on the diffusion screen or alternative background, forming a composite image that includes dynamic and/or static two-dimensional imagery combined with the static three-dimensional object image. The silhouette image thus provides a background for viewing the object image and occludes the two-dimensional imagery from the view of the object image. The silhouette hologram can be illuminated with a first light source that is projected from an angle with respect to the beam of a second light source that illuminates the object hologram.