Abstract:
The exemplary systems, apparatus, structures, and methods may include an assembly including substrate, an optical waveguide, and an optical access associated with the optical waveguide. Light from the optical access may be measured along the optical waveguide. The coupling loss of the optical waveguide may be determined based on at least the light measurements from the optical access.
Abstract:
A phototherapy device includes a high intensity light source secured to a leaky light conducting fiber to leak light along the length of the fiber. The light fiber is illuminated at either or both ends by the light source and the light fiber is generally oriented in a 3-D spiral pattern to form a dome of light to provide phototherapy to an area of a patient's scalp to be treated. A generally hemispherical shell is formed of a first or inner translucent diffuser layer secured to a second or outer reflective layer, the first and second layers encapsulating the 3-D non-overlapping spiral pattern light fiber. A control system is also provided to turn off the light source when a break or discontinuity occurs in the fiber.
Abstract:
The exemplary systems, apparatus, structures, and methods may include an assembly including substrate, an optical waveguide, and an optical access associated with the optical waveguide. Light from the optical access may be measured along the optical waveguide. The coupling loss of the optical waveguide may be determined based on at least the light measurements from the optical access.
Abstract:
Apparatus and method for in-line cladding-light dissipation including forming a light-scattering surface on the optical fiber such that the light-scattering surface scatters cladding light away from the optical fiber. In some embodiments, the apparatus includes an optical fiber having a core and a first cladding layer that surrounds the core, wherein a first portion of the optical fiber has a light-scattering exterior surface. Some embodiments further include a transparent enclosure, wherein the transparent enclosure includes an opening that extends from a first end of the transparent enclosure to a second end of the transparent enclosure, and wherein at least the first portion of the optical fiber is located within the opening of the transparent enclosure. Some embodiments include a light-absorbing housing that surrounds the optical fiber and the transparent enclosure and is configured to absorb the light scattered away from the optical fiber by the light-scattering exterior surface.
Abstract:
A high power cladding light stripper and high power laser systems using the same are described. A cladding light stripper includes a housing, a section of fiber disposed in relation to the housing wherein a portion of the section of fiber has an exposed cladding region, a plurality of glue regions sequentially arranged adjacent to each other along the section of fiber and covering the exposed cladding region, and wherein at least one glue region between a first glue region and a last glue region of the plurality of glue regions has a refractive index higher or lower than both an adjacent previous glue region and an adjacent subsequent glue region.
Abstract:
A holographic photonic integrated circuit includes a substrate with a ridge plane, a waveguide formed in the ridge plane haing an input and an output, a hologram formed in the ridge plane at least partially through the waveguide, and a CW light source wherein an optical signal entering the input is modulated by the CW light source to create a modulated output signal.
Abstract:
An optical coupling structure for optically coupling a light emitting device to an optical waveguide is disclosed. The optical coupling structure includes a V-shaped inclined portion provided on part of the optical waveguide, and a light-incident section formed on a protruding side of the V-shaped inclined portion in association with a light emitting section of the light emitting device.
Abstract:
A grating (18) couples the waveguide region of a semiconductor laser (11) to a dielectric waveguide (21). The waveguide region of the laser includes a mirror (15) at one end thereof and an absorber (24) at the other end thereof. The dielectric waveguide includes a reflector therein to reflect a portion of the light coupled from the laser to the dielectric waveguide back into the laser waveguide region.
Abstract:
A mounting structure for a light guide having a core and a longitudinal axis, wherein the mounting structure includes a holder into which the light guide is insertable obliquely or perpendicular to the longitudinal axis, and the mounting structure is configured to provide an optical coupling to the core of the light guide.
Abstract:
An optical connection device includes a light source section configured to emit light, a light guide section configured to guide the light emitted from the light source section and including an emitting section configured to emit the guided light to the outside, and a light receiving section configured to receive the light emitted from the emitting section. At least one of the light source section and the light receiving section turns around a turning axis. Therefore, a transmission distance of the light from the light source section to the light receiving section changes.