摘要:
Determining a type of annular material in a wellbore comprises measuring an acoustic noise of one or more reference materials and thereby generating a corresponding one or more acoustic profiles, monitoring the annular material with an acoustic sensor positioned in the wellbore and thereby obtaining an acoustic response of the annular material, comparing the acoustic response with the one or more acoustic profiles using a processor communicably coupled to the acoustic sensor, and characterizing the annular material based on the comparison of the acoustic response and the one or more acoustic profiles.
摘要:
In one embodiment, a method includes drilling a wellbore in a formation with a drilling tool. The method further includes receiving electromagnetic radiation using an opto-analytical device coupled to the drilling tool. The method also includes detecting vibrations associated with drilling the wellbore based on the received electromagnetic radiation.
摘要:
In one embodiment, a method includes drilling a wellbore in a formation with a drilling tool. The method further includes receiving electromagnetic radiation using an opto-analytical device coupled to the drilling tool. The method also includes detecting vibrations associated with drilling the wellbore based on the received electromagnetic radiation.
摘要:
Systems and methods include a computer-implemented method for determining normalized apparent power. Drilling acoustic signals corresponding to a time domain and generated during drilling of a well. A fast Fourier transformation (FFT) is performed using the drilling acoustic signals to generate FFT data. Normalized FFT data is generated using normalization parameters and a drill string rotation rate record of a drill string used to drill the well. The drill string rotation rate is received during drilling. Normalized apparent power is determined from data points of a predetermined top percentage of the normalized FFT data within a lithological significant frequency range. The normalized apparent power is a measure of the power of the drilling acoustic signals and it is a function of the amplitude and frequency of the normalized FFT data. The lithological significant frequency range is a frequency range within which the drill sounds are more closely related with lithology.
摘要:
A method for performing a seismic investigation during subterranean drilling operations includes connecting a bottom hole assembly to a drill string. The bottom hole assembly includes a drill bit and a vibration damper. The drill string is lowered into a borehole and rotated to drill the borehole to a greater length with the drill bit. An actual vibration generated by the bottom hole assembly is measured with a control system and the actual vibration is compared to a target seismic vibration range. When the actual vibration is outside of the target seismic vibration range, the dampening coefficient of the vibration damper is changed.
摘要:
A multi-wavefield seismic detection method and system based on construction noise of a shield machine. Multi-wavefield seismic information such as a body wave and a surface wave formed during propagation of a seismic wave generated by excitation in a stratum is obtained by using noise information caused by the construction of a shield machine as a seismic source, a stratum velocity model along a tunnel is constructed through joint inversion, and reflection wave information or the like is used for migration imaging, to eventually implement relatively accurate detection of a geological condition in front of a tunnel face of shield construction.
摘要:
Apparatus and methods of identifying rock properties in real-time during drilling, are provided. An apparatus includes an acoustic sensor installed in a drilling fluid circulation system of a drilling rig, the acoustic sensor coupled to one of the following: (i) a bell nipple, (ii) a gooseneck, or (iii) a standpipe. Raw acoustic sensor data generated real-time as a result of rotational contact of the drill bit with rock during drilling is received, and a plurality of acoustic characteristics are derived from the raw acoustic sensor data. The lithology type of rock undergoing drilling may be determined from the acoustic characteristics. Petrophysical properties of the rock undergoing drilling may be determined using a petrophysical properties evaluation algorithm employable to predict the petrophysical properties of rock undergoing drilling from the raw acoustic sensor data.
摘要:
A wireline interface sub includes a wireline-interface-sub housing mechanically coupleable to a wireline and a wireline-interface module electrically coupleable to the wireline. A first tandem sub includes a first-tandem-sub housing mechanically coupled to the wireline-interface-sub housing, a first-tandem-sub-upside transceiver wirelessly coupled to the wireline-interface module, and a first-tandem-sub-downside transceiver electrically coupled to the first-tandem-sub-upside transceiver. A first gun sub includes a first-gun-sub housing mechanically coupled to the first-tandem-sub housing, a first-gun-sub transceiver wirelessly coupled to the first-tandem-sub-downside transceiver, and a first-gun-sub detonator coupled to, and triggerable by, the first-gun-sub transceiver.
摘要:
Systems and methods include a computer-implemented method for determining normalized apparent power. Drilling acoustic signals corresponding to a time domain and generated during drilling of a well. A fast Fourier transformation (FFT) is performed using the drilling acoustic signals to generate FFT data. Normalized FFT data is generated using normalization parameters and a drill string rotation rate record of a drill string used to drill the well. The drill string rotation rate is received during drilling. Normalized apparent power is determined from data points of a predetermined top percentage of the normalized FFT data within a lithological significant frequency range. The normalized apparent power is a measure of the power of the drilling acoustic signals and it is a function of the amplitude and frequency of the normalized FFT data. The lithological significant frequency range is a frequency range within which the drill sounds are more closely related with lithology.
摘要:
Various embodiments include apparatus and methods to estimate properties of rock, drill bit, or a combination thereof associated with a drilling operation. The properties can include, but are not limited to, rock chip size, drill bit dullness, drilling efficiency, or a combination selected from rock chip size, drill bit dullness, and drilling efficiency. The estimate may be accomplished from correlating detected acoustic emission with detected electromagnetic emissions. In various embodiments, formation brittleness may be determined. The various estimates may be used to direct a drilling operation. Additional apparatus, systems, and methods are disclosed.