Abstract:
For determination of the position of a movable component with a plurality of position magnets relative to a stationary component with a plurality of position sensors, it is provided that the sensor responses are detected for a group of position sensors in the region of the movable component, sensor model responses of the group of position sensors are determined from a sensor model for a plurality of assumed different relative positions of the movable component relative to the stationary component, the sensor model responses are compared with the sensor responses and the assumed relative position with the smallest deviation between the sensor model responses and the sensor responses is used as the relative position of the movable component.
Abstract:
There is provided an optical encoder including a phase shifter circuit and a multiple hysteresis comparators. The phase shifter circuit receives four input signals, and outputs multiple phase shifted signals based on the four input signals. Each of the multiple hysteresis comparators uses a changeable operation hysteresis level to compare a couple of phase shifted signals among the multiple phase shifted signals, wherein the changeable operation hysteresis level is determined corresponding to a signal frequency of the four input signals.
Abstract:
A rotary encoder includes a rotatable conductor and first and second signal contacts. The rotatable conductor includes a first contact finger that slides on a track which is at least a part of a circle having a center point as a center thereof; and second contact finger that slides on the track and is located at an angular position different from an angular position of the first contact finger. The first signal contact is disposed on the track, and is configured to output a signal according to an angular position of the rotatable conductor about the center point. The second signal contact is disposed on the first track, and is configured to output a signal according to the angular position of the rotatable conductor about the center point. The second signal contact is electrically independent of the first signal contact. This rotary encoder includes a small number of tracks, and accordingly has a small size.
Abstract:
A device menu controls connector for a process automation field device include a field device part and a removable knob assembly. The field device part includes one or more Hall effect sensors, and the knob assembly includes one or more magnets. When the knob assembly is attached to the field device part, the knob may be rotated clockwise or counter-clockwise, or may be pushed or pulled. The interaction of the magnets and Hall effect sensors allow the field device to sense the rotation and the pushing and pulling of the knob. The programming of the field device allows the device menu controls connector to simulate , , , , , and key presses of a user interface. A field device having such a device menu controls connector is also disclosed.
Abstract:
The rotation angle and torsion angle sensor detects both the rotational position of a shaft and a torque applied to the shaft torque. The shaft a first shaft part and a second shaft part, which are interconnected by a torsion bar. A sensor disc is coupled via a rigid circumferentially and axially flexible membrane with the first shaft part. The sensor disc is coupled to a drive wheel via a coupling device, in such a way that the sensor disc is displaced in the axial direction upon relative rotation of the two shaft parts against each other, wherein the membrane bends in the axial direction.
Abstract:
The rotation detection device includes: an encoder having to-be-detected patterns cyclically arranged in the circumferential direction; and a sensor configured to detect the to-be-detected patterns to generate pulses. The device further includes a reference pattern storage unit, a phase difference detection unit, and an error correction unit. The reference pattern storage unit measures pitch errors in the to-be-detected patterns prior to operation and stores the pitch errors as a reference pattern Pref. The phase difference detection unit determines a pitch error pattern Pm corresponding to one rotation of the to-be-detected patterns from rotation signals representing a plurality of rotations detected during operation, and performs comparison with a reference pattern Pref to determine a relative phase difference φ. Based on the phase difference φ obtained by the phase difference detection unit, the error correction unit corrects errors included in the rotation signals detected by the sensor.
Abstract:
An inventive encoding system that expects, accepts and interprets both normal and abnormal states of a sensor array, and that preferably further recognizes a zero state as a malfunction. The system is “absolute,” in that it allows detection of the best fit detectable position of a movable object with an accuracy equal to the resolution which is equal to one-half the physical displacement of sensors or sources in an array. Such absolute references may be used to define a position detector which properly detects the position of an object after power is applied, even though the object may have moved further after power is removed. As a result, the inventive encoder does not require a battery back-up to detect position accurately after a power failure. This functionality is highly advantageous when detecting shaft position of a multi-turn shaft. The inventive encoding system is also scalable so that there are few limitations in deployment. Truth table logic is employed in a logic function that is designed to implement the foregoing attributes of the inventive encoding system.
Abstract:
In an angle-based binary encoded crankshaft position sensing system, a target wheel is coupled to a crankshaft and a single VR sensor is juxtaposed with the target wheel for sensing the angular position of the wheel and, hence, the angular position of the crankshaft. To permit the use of a single VR sensor in conjunction with an angle-based binary encoded system, the periphery of the target wheel is formed with teeth and slots defining a binary pattern. The slots are wider than the teeth, and the depth of the slots relative to the portion of the periphery defining a nominal radius is greater than the height of the teeth relative to the nominal periphery. With this structure, the signal generated by the sensor in response to a slot advantageously is symmetric to the signal generated by the sensor in response to a tooth.