Abstract:
A plate for a heat exchanger between a first medium and a second medium, the plate being associated with a main plane of extension and a main longitudinal direction and including a first heat transfer surface, extending substantially in parallel to the main plane and arranged to be in contact with the first medium, generally flowing along the first surface in a first flow direction; and a second heat transfer surface, extending substantially in parallel to the main plane and arranged to be in contact with the second medium, generally flowing along the second surface in a second flow direction. The first surface includes protruding ridges defining at least two parallel and open-ended channels extending in the first flow direction. The second surface includes a plurality of protruding dimples arranged in the channels between neighbouring respective pairs of the ridges.
Abstract:
The invention relates to a heat exchanger plate (10) of a heat exchanger, the heat exchanger plate (10) comprising two faces (12, 13) extending between two lateral edges and two longitudinal edges (15) of said heat exchanger plate (10). The heat exchanger plate (10) comprises at least an opening (16) extending from a first face (12) to a second face (13) of the heat exchanger plate (10). The opening (16) is delimited by a collar (17) that is arranged around the opening (16). The heat exchanger plate (10) comprises at least a dimple (18) protruding above at least one of the faces (12, 13). Said dimple (18) comprises at least a flat area (19) and a sloped area (20), said sloped area (20) being interposed between the collar (17) and the flat area (19).
Abstract:
A heat pipe with a non-condensable gas includes a thermal conductor, and a working fluid and a non-condensable gas filled into a hollow chamber of the thermal conductor, and the thermal conductor has a heat-absorbing side attached to a heat-generating electronic component and an exothermal side attached to a radiator, and the exothermal side has at least one protrusion, and the exothermal side with the protrusion can reduce the contact area with the radiator, and the heat pipe lowers the conduction efficiency by the non-condensable gas and the protrusion, so as to achieve a work efficiency of the heat-generating electronic component in an operation within a working temperature range.
Abstract:
In an inner fin, a plate is made up of a top part, a bottom part, and a wall plate part, and a channel having a concave-shaped cross section and a channel having an inverted concave-shaped cross section are alternately repeated as channels of the gas by a pair of the wall plate parts facing each other. The wall plate part for each of the channels has a shape in which the wall plate part is bent left and right in a serpentine shape and projected and recessed parts thereof are alternately repeated and formed, and the recessed part of the wall plate part is formed with a chevron-shaped part made up of an upward slope part that ranges from a base part to the top part and a downward slope part that passes downward from the top part to a neighboring base part.
Abstract:
A flexible heat sink with a flexible base having a first side configured to engage a heat generating component, and a second side opposite the first side. A plurality of groups of fins extend from the second side of the base. The groups of fins are positioned in an array and spaced apart lengthwise and width wise across the base to enable the heat sink to flex lengthwise and width wise. The heat sink is able to flex lengthwise and width wise between the groups of fins. The fins and groups of fins also may provide some flex. The fins may define triangular, rectangular, or u-shaped channels to enable air flow through the heat sink.
Abstract:
The present invention relates to a blend of at least one boron source and at least one silicon source, wherein the blend comprises boron and silicon in a weight ratio boron to silicon within a range from about 5:100 to about 2:1, wherein silicon and boron are present in the blend in at least 25 wt %, and wherein the at least one boron source and the at least one silicon source are oxygen free except for inevitable amounts of contaminating oxygen, and wherein the blend is a mechanical blend of powders, and wherein particles in the powders have an average particle size less than 250 μm. The present invention relates further to a composition comprising the blend a substrate applied with the blend, a method for providing a brazed product, and uses.
Abstract:
An EGR cooler includes a heat exchanging core which has a plurality of tubes, an upstream-side gas tank portion upstream of the tubes and a downstream-side gas tank portion downstream of the tubes. A water tank portion forms a first water passage around the tubes and forms a second water passage around the upstream-side gas tank portion. A double pipe portion forms a gas passage which communicates with the upstream-side gas tank portion and forms an annular water passage which communicates with the second water passage. A water inflow pipe is connected to the double pipe portion such that the cooling water flows into the annular water passage, and a water outflow pipe that is connected to the water tank portion such that the cooling water flows out from the first water passage.
Abstract:
A battery cell heat exchanger formed by a pair of mating plates that together form an internal tubular flow passage. The tubular flow passage is generally in the form of a serpentine flow passage extending between an inlet end and an outlet end and having generally parallel flow passage portions interconnected by generally U-shaped flow passage portions. The flow passage provides a graded heat transfer surface within each generally parallel flow passage portion and/or a variable channel width associated with each flow passage portion to provide improved temperature uniformity across the surface of the heat exchanger. The graded heat transfer surface may be in the form of progressively increasing the surface area associated with the individual flow passage portions with heat transfer enhancement features or surfaces arranged within the flow passage portions. The channel width and/or height may also be varied so as to progressively decrease for each flow passage portion.
Abstract:
Disclosed is a method for producing a permanently joined plate heat exchanger comprising a plurality of metal heat exchanger plates having a solidus temperature above 1100° C., provided beside each other and forming a plate package with first plate interspaces for a first medium and second plate interspaces for a second medium, wherein the first and second plate interspaces are provided in an alternating order in the plate package. Each heat exchanger plate comprises a heat transfer area and an edge area which extend around the heat transfer area. The heat transfer area comprises a corrugation of elevations and depressions, wherein said corrugation of the plates are provided by pressing the plates. Also disclosed is a plate heat exchanger produced by the method.
Abstract:
Heat transfer plates are stacked, each being provided with a plurality of passage holes, a flow-path forming gasket is interposed between peripheries of each adjacent ones of the heat transfer plates, thereby alternately forming a first flow path to pass a high-temperature fluid, a second fluid to pass a low-temperature fluid, and communicating paths to cause the fluids to flow in and out of the first flow path and the second flow path on opposite sides of each heat transfer plate, and communicating-path forming gaskets surrounding the passage holes are interposed between adjacent ones of the heat transfer plates, thereby forming a communicating path to cause a fluid to flow in and out of the first flow path and a communicating path to cause a fluid to flow in and out the second flow path. Each communicating-path forming gasket is made up of inner and outer gasket members arranged in two lines, the inner gasket member surrounding the passage holes while the outer gasket member surrounding the inner gasket member.