摘要:
A viewport for a combustion zone includes an inner casing having a flange extending into the combustion zone. A first layer of ceramic fiber insulation is exterior to the inner casing. A middle casing includes two panes of quartz glass separated by traverse plates. A second layer of ceramic fiber insulation is exterior to the middle casing. An outer casing is positioned to the exterior of the second layer of insulation. The middle casing includes L-shaped ledges having third and fourth layers of ceramic insulation. The panes of glass are each positioned between layers of insulation and the insulation positioned in the L-shaped ledges. The viewport is modular enabling the separation of the first layer of insulation, the middle casing, the second layer of insulation and the outer casing from the combustion zone for maintenance or repair. The viewport minimizes heat migration to the outer casing during use.
摘要:
The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO2 circulating fluid. The methods and systems advantageously can make use of a low pressure ratio power turbine and an economizer heat exchanger in specific embodiments. Additional low grade heat from an external source can be used to provide part of an amount of heat needed for heating the recycle CO2 circulating fluid. Fuel derived CO2 can be captured and delivered at pipeline pressure. Other impurities can be captured.
摘要:
The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO2 circulating fluid. The methods and systems advantageously can make use of a low pressure ratio power turbine and an economizer heat exchanger in specific embodiments. Additional low grade heat from an external source can be used to provide part of an amount of heat needed for heating the recycle CO2 circulating fluid. Fuel derived CO2 can be captured and delivered at pipeline pressure. Other impurities can be captured.
摘要:
A method of forming high strength glass fibers in a refractory-lined glass melter, products made there from and batch compositions suited for use in the method are disclosed. The glass composition for use in the method of the present invention is up to about 64-75 weight percent SiO2, 16-24 weight percent Al2O3, 8-12 weight percent MgO and 0.25-3 weight percent R2O, where R2O equals the sum of Li2O and Na2O, has a fiberizing temperature less than about 2650° F., and a ΔT of at least 80° F. By using oxide-based refractory-lined furnaces the cost of production of glass fibers is substantially reduced in comparison with the cost of fibers produced using a platinum-lined melting furnace. High strength composite articles including the high strength glass fibers are also disclosed.
摘要:
An unshaped product including a particulate mixture containing: a coarse fraction, representing >50% 1 mm, in mass percentage based on particulate mixture, matrix fraction having a chemical analysis, in mass percentage based on oxides of matrix fraction, such: Al2O3+SiO2+ZrO2>86%, providing 35%
摘要:
A burner port block assembly having a refractory block with a central passageway therethrough and a ceramic extension piece disposed at least partially in the central passageway of the refractory block. The extension piece has a distal end, a proximal end, and a sidewall that defines a central passageway extending between the distal end and the proximal end. The central passageway of the refractory block is provided with a first engagement structure and the sidewall of the extension piece is provided with a second engagement structure. Engagement of the first engagement structure with the second engagement structure connects the extension piece to the refractory block. The burner port block assembly may further include at least one ceramic fiber board having a hole therethrough disposed at the distal end of the refractory block and/or a gasket positioned between the refractory block and the extension piece.
摘要:
A component is provided for a gas turbine engine includes a substrate with an aperture. The component also includes a backside coating on a backside of the substrate and at least partially onto an inner boundary of the aperture, where the backside coating forms a passage with the aperture. A method of forming a shaped aperture in a component of a gas turbine engine is provided. The method includes applying a backside coating on a backside of a substrate and at least partially onto an inner boundary of an aperture. The backside coating forms a passage with the aperture including a convergent section, a divergent section and a throat therebetween.
摘要:
A process for the manufacture of a material including a glass or glass-ceramic substrate provided, on at least one of its faces, with a stack of thin layers including a functional layer based on indium tin oxide, the process including successively depositing the functional layer and then, under a pressure of at most 2.5 μbar, an oxygen barrier layer by magnetron cathode sputtering on the at least one face of the substrate.
摘要:
Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
摘要:
Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.