Abstract:
An appliance includes a first gas-burning heating element, a first gas path extending from an inlet to the first heating element, and a first solenoid valve positioned within the first gas path. The appliance further includes a second gas path extending from upstream of the first solenoid valve to the first heating element and supplying a base gas flow to the first heating element. A controller is electronically coupled with the first solenoid valve for controlling a supplemental flow of gas through the first gas path to the first heating element such that the supplemental gas flow combines with the base gas flow to achieve a total gas flow. The controller controls the supplemental flow to adjust the total gas flow by pulsing the first solenoid valve at a first rate corresponding to a desired rate of the total gas flow to the first heating element.
Abstract:
An improved process for burning a fuel to produce a flue gas is disclosed. The fuel is burned in a main combustion zone in the presence of a main combustion oxidant to produce combustion products. The combustion products are mixed in a post-combustion zone positioned downstream from the main combustion zone. The post-combustion zone is provided with a recirculation zone positioned proximate to the main combustion zone and an injection zone positioned downstream from the recirculation zone. An post-combustion oxidant is injected into the combustion products in the injection zone. At least one of (a) the residence time of the combustion products in the post-combustion zone, (b) the temperature range of the combustion products contained within the injection zone and (c) the oxygen content of the oxidant is controlled to optimize the level of CO and NOx in the flue gas.
Abstract:
A power generation method and apparatus includes a plurality of gas reactors that combust fuel and an oxygen-containing gas under substantially adiabatic conditions such that hot high pressure combustion gases flow alternately and substantially continuously from each reactor to a work-producing device wherein the combustion gases are expanded to provide work. A portion of the expanded gases, or ambient air can be mixed with the combustion gases to form a mixture of gases fed to the work-producing device.
Abstract:
A combustion apparatus 2 has a fuel spraying nozzle 12, a feed canal 16 and a return canal 17, both the canals connected to the nozzle, with the former canal 16 feeding a fuel to the nozzle and with the latter canal 17 allowing an unsprayed portion of the fuel to flow back. An electromagnetic pump 18 disposed in the feed canal 16 serves to compress the fuel towards the nozzle 12, and an injector valve 25 is disposed in the return canal 17. A controller 40 regulates the operation of the injector valve 25 in the manner of duty-ratio control so as to adjust the flow rate of the fuel being sprayed out of the nozzle 12.
Abstract:
In a method for the control of thermoacoustic instabilities or oscillations in a combustion system (15), pressure oscillations and/or heat release oscillations in the combustion system (15), which are linked to the thermoacoustic instabilities, are measured, the resulting measurement signal is filtered, time-delayed and amplified, and, according to the filtered, delayed and amplified measurement signal, the fuel stream to or the combustion air for the combustion system (15) is modulated. In such a method, the use of more cost-effective modulation devices is achieved in that modulation takes place at a subharmonic of a dominant instability frequency in the combustion system (15).
Abstract:
A fuel injector for a liquid fuel burner that provides for large turn-down ratios and low firing rates. The fuel injector has a fast acting valve to provide a pulsed flow of fuel from a fuel supply and a nozzle coupled to the valve for receiving and atomizing the pulsed flow of fuel. The pulse of atomizing fuel is injected into the throat of a burner. A fuel controller coupled to the fuel supply and the fuel injector governs the rate of fuel delivery by controlling the duration and frequency of an opening period of the fast acting valve.
Abstract:
This invention relates to air breathing engines, such as ramjets, scramjets and internal combustion, and more particularly to an active combustion control device for a combustor. In more particularity, the present invention relates to a method and apparatus that applies active combustion control technology to advanced propulsion devices and closed-loop fuel injection at sub-harmonic frequencies of the instability frequency of the combustor. The problem of limited actuator frequency response is addressed by injecting fuel pulses at sub-harmonic frequencies of the instability. The fuel may be liquid, solid or gas. To achieve this desired result, a closed loop controller is designed to determine sub-harmonic frequencies using a divider to divide the instability frequency of a combustor, yielding a fraction of the harmonic frequency. Also, this invention also combines open loop injection control with closed loop injection control to obtain enhanced engine performance, which includes extension of the stable combustion zone.
Abstract:
A system and method for modifying the supply of fuel to injectors to attenuate combustion oscillations in a gas turbine engine. The gas turbine engine may comprise a combustor, a plurality of injectors and a manifold. The plurality of injectors may be operable to provide fuel to the combustor. The manifold may be configured to supply fuel to all of the plurality of injectors or to only a portion of the plurality of injectors in reaction to a determination of an existence of combustion oscillations.
Abstract:
A device and method for controlling the flow of a gaseous fuel from a fuel supply to a pressurized combustion chamber. A fuel pump is included in the gas train from supply to chamber. The fuel pump increases the pressure of the gas to allow efficient injection into the chamber. The pump is modulated to control the fuel flow. Both alternating current and pulse-width-modulated direct current signals may be used to control the flow. The pump may be a piston pump or a diaphragm pump. Feedback may be provided from sensors that determine operating parameters of the engine and such sensor signals may be used by the controller to maintain a parameter, such as temperature, at a specified value. An acoustic filter can be included in the gas train to significantly reduce gas flow pulsations generated by the pump. This filter improves the uniformity of the combustion process.