Abstract:
The present application thus provides a hose connection system for connecting a hose to a gas turbine engine. The hose connection system may include a connection fitting and a connection tool. The connection fitting may include a first member to be attached to the gas turbine engine, a mating component to be attached to the hose, and a splined second member to be torqued onto the first member. The connection tool may include a drive wheel with a number of drive wheel splines such that the drive wheel splines torque the splined second member onto the first member.
Abstract:
A gas turbine engine includes a liner positioned within a compressor section or a turbine section of the gas turbine engine and at least partially defining a core air flowpath through the gas turbine engine. The gas turbine engine also includes a casing at least partially enclosing the liner. Additionally, the gas turbine engine includes a pressure sensor assembly having a body, an extension member, and a pressure sensor. The pressure sensor is positioned at least partially within the body and the body is positioned at least partially on an outer side of the casing, the extension member extending from the body through a casing opening in the casing and towards a liner opening in the liner. The extension member defines a continuous sense cavity exposing the pressure sensor to the core air flowpath.
Abstract:
The present disclosure provides a gas turbine combustor including a combustion structure (10) having a combustor liner (14) and a flow sleeve (12). The combustor liner (14) includes inner and outer surfaces (31, 30) and defines a combustion zone (15). The gas turbine combustor further includes a plurality of hollow airfoil-shaped structures (22) affixed to the combustor liner (14) and extending radially outwardly into an airflow space (18) defined radially between the flow sleeve (12) and the combustor liner (14). Each hollow structure (22) includes at least one metering tube (26) providing acoustic communication between the combustion zone (15) and the hollow structure (22). The metering tubes (26) are detachably coupled to the combustor liner (14) for permitting interchanging of the metering tube (26) with at least one additional metering tube having at least one different dimension to effect a change in an acoustic characteristic of the hollow structure (22).
Abstract:
A method for casting comprising: providing a seed, the seed characterized by: an arcuate form and a crystalline orientation progressively varying along an arc of the form; providing molten material; and cooling and solidifying the molten material so that a crystalline structure of the seed propagates into the solidifying material.
Abstract:
A heat engine (10) comprising: a feeder stage (20) comprising: a first compressor (24) for compressing first gas received at pressure P1 from a gas source to an elevated pressure and temperature; a reactor (28) for receiving gas compressed by the first compressor (24) and combining the compressed gas with fuel to generate an exothermic reaction; and a primary stage comprising (40); a circuit (42) for recirculating a gas flow comprising a second gas; a mixing chamber (44) in fluid communication with the circuit (42) for combining the products of the exothermic reaction from the feeder stage (20) with the gas flow in the circuit (42) at pressure P2, wherein P2 is greater than P1, an expander (48) for expanding gas received from the mixing chamber (44) to generate mechanical work; and a second compressor (58) for compressing gas expanded by the expander (48).
Abstract:
A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) that includes a sensor (306) in connection with a turbine blade (301) or vane (22). A telemetry transmitter circuit (312) may be affixed to the turbine blade with an electrical connecting material (307) for routing electronic data signals from the sensor (306) to the telemetry transmitter circuit, the electronic data signals indicative of a condition of the turbine blade. A resonant energy transfer system for powering the telemetry transmitter circuit may include a rotating data antenna (314) affixed to the turbine blade or on a same substrate as that of the circuit. A stationary data antenna (320) may be affixed to a stationary component such as a stator (323) proximate and in spaced relation to the rotating data antenna for receiving electronic data signals from the rotating data antenna.
Abstract:
A system for detecting an at-fault combustor includes a sensor that is configured to sense combustion dynamics pressure data from the combustor and a computing device that is in electronic communication with the sensor and configured to receive the combustion dynamics pressure data from the sensor. The computing device is programmed to convert the combustion dynamics pressure data into a frequency spectrum, segment the frequency spectrum into a plurality of frequency intervals, extract a feature from the frequency spectrum, generate feature values for the feature within a corresponding frequency interval over a period of time, and to store the feature values to generate a historical database. The computing device is further programmed to execute a machine learning algorithm using the historical database of the feature values to train the computing device to recognize feature behavior that is indicative of an at-fault combustor.
Abstract:
A gas turbine system includes a gas turbine including a combustor for combusting a fuel and a control assembly configured to control at least one of a fuel system and the combusting of the combustor based on providing values corresponding to at least one of fuel characteristics and combustor characteristics to a fuel induction time transfer function.
Abstract:
A method of transitioning from a first operating mode to a second operating in a gas turbine engine. An amount of fuel provided to a primary fuel injection system of the combustor apparatus is reduced. An amount of fuel provided to a secondary fuel/air injection system of the combustor apparatus is reduced, wherein the secondary fuel/air injection system provides fuel to a secondary combustion zone downstream from a main combustion zone. A total amount of air provided to the combustor apparatus is reduced, wherein portions of the air are provided to each of the injection systems. Upon reaching operating parameters corresponding to the second operating mode, the amount of fuel provided to the primary fuel injection system is increased, the amount of fuel provided to the secondary fuel/air injection system is reduced, and the total amount of air provided to the combustor apparatus is increased.