摘要:
Provided is a treatment system whereby a wet organic waste can be effectively treated and CO2 produced in the course of the treatment can be immobilized to thereby contribute to the reduction of CO2. The treatment system is characterized by including microbiologically fermenting a wet organic waste in a fermentation device, combusting in a combustion furnace a fermented material obtained from the fermentation device and, at the same time, supplying to the combustion furnace a fermentation gas produced by the microbiological fermentation treatment in the fermentation device, and then recovering and immobilizing CO2 in a hot exhaust gas produced by the combustion treatment in the combustion furnace.
摘要:
Systems and related methods of using heat to process an agriculture/product are provided. The system comprises a circulating fluidized bed combustor, a first conduit system, and an indirect heating dryer. The circulating fluidized bed combustor comprises a combustion chamber configured to combust a fuel to generate a mixture comprising hot gases and particulate matter, and a separation chamber configured to separate at least a portion of the particulate matter from the mixture to form a flow of cleaned hot gas. The first conduit system is configured to conduct the cleaned hot gas to a heat exchanger. The indirect heating dryer is in heat conductive contact with the heat exchanger and configured to use the heat from the cleaned hot gas to indirectly dry the agricultural product without contacting the agricultural product with the cleaned hot gas. The system and methods provide hot gas for efficient and low cost energy formed from alternative and lower cost fuels, including biomass sources, and allows for flexibility and efficiency in numerous manufacturing processes.
摘要:
Provided is a treatment system whereby a wet organic waste can be effectively treated and CO2 produced in the course of the treatment can be immobilized to thereby contribute to the reduction of CO2. The treatment system is characterized by including microbiologically fermenting a wet organic waste in a fermentation device, combusting in a combustion furnace a fermented material obtained from the fermentation device and, at the same time, supplying to the combustion furnace a fermentation gas produced by the microbiological fermentation treatment in the fermentation device, and then recovering and immobilizing CO2 in a hot exhaust gas produced by the combustion treatment in the combustion furnace.
摘要:
A process is described for obtaining energy from waste, comprising the following phases: a) bio-drying of municipal solid waste (MSW) to transform it into refuse-derived fuel (RDF), a dry, homogeneous material with piece size of around 20-30 cm, known by the name of RDF; h) compacting of the material obtained from phase a) into bales or BIOCUBr and storage of the BIOCUBI® in bioreactors; c) activation by wetting with water of the bioreactors to produce biogas by anaerobic digestion; d) combustion at the start of the material obtained from phase a) (RDF) and subsequently of the residue already digested in the bioreactors, and therefore not biodegradable, in a waste combustor provided with a system of purification of combustion gasses and production of superheated steam at approximately 400° C. and pressure of around 70 bar; e) combustion of the purified biogas in a conventional boiler provided with re-superheaters for raising the temperature of the steam produced by the waste combustor by approximately 100° C.; f) use of the steam produced in this way in a turbine coupled with an alternator for the production of electrical energy. The invention also relates to a system for the implementation of this method.
摘要:
This invention relates to systems, apparatus and methods of operating a wet combustion engine and apparatus therefore, capable of biologically burning fuels within a wet combustion chamber within a bioproactor system, including but not limited to, organic carbon containing materials especially biological, hazardous or toxic waste contaminants, in an environmentally sensitive manner. An integrated computer control system that, proactively and pre-emptively, uses feedback from bio-sensors, to monitor, record and control applicable components of the bio-system, to optimize, replenish, and sustain exponential growth of selected life-forms, including but not limited to microbes such as bacteria. In the intake cycle, a suitably prepared fuel mixture is metered into the wet combustion diffusion separation membrane chamber located within the life-support chamber of the bioproactor. In the combustion cycle, diffusion and combustion rates are monitored and timed. In the exhaust cycle, products of combustion, including water and incomplete combustion by-products both organic and inorganic, are removed. The above cycles may be repeated sequentially. The subsequent accumulation of all of the exhaust cycle's products of combustion may be collected, stored, classified, separated, recycled or discharged. Some of the potential energy released during the combustion cycle's reaction directly results in the conversion of wastes, the generation of gases and, in the case of organic carbon fuels, the generation of water. Other uses of the kinetic and potential energy released by this engine include, but are not limited to the, mechanical movements of actuators, and heat transfer to heat exchangers.
摘要:
The invention concerns a method and a plant for producing hydrocarbon based fuels from waste and biomass including wood and/or other cellulose containing biomass, where biomass and/or waste is gasified in anaerobic conditions, heating the formed syngas in for decomposition and subsequent condensation in anaerobic conditions, subjecting the heat treated biosyngas to cleaning measures for removing elements/compounds which are poisonous towards the catalysts of the Fischer-Tropsch synthesis, and passing the cleaned heat treated biosyngas through a Fischer-Tropsch synthesis for production of biofuels.
摘要:
Systems and related methods of using heat to process an agricultural product are provided. The system comprises a circulating fluidized bed combustor, a first conduit system, and an indirect heating dryer. The circulating fluidized bed combustor comprises a combustion chamber configured to combust a fuel to generate a mixture comprising hot gases and particulate matter, and a separation chamber configured to separate at least a portion of the particulate matter from the mixture to form a flow of cleaned hot gas. The first conduit system is configured to conduct the cleaned hot gas to a heat exchanger. The indirect heating dryer is in heat conductive contact with the heat exchanger and configured to use the heat from the cleaned hot gas to indirectly dry the agricultural product without contacting the agricultural product with the cleaned hot gas. The system and methods provide hot gas for efficient and low cost energy formed from alternative and lower cost fuels, including biomass sources, and allows for flexibility and efficiency in numerous manufacturing processes.
摘要:
The method aims at obtaining from waste and more particularly from municipal solid waste (MSW) the energy contained therein at the highest level for industrial use by means of natural technologies and with low environmental impact. The method, denoted by the acronym NEW (Natural Energy from Waste) operates through the following process phases: a) aerobic digestion of the putrescible biological part to produce stabilised waste which is easy to handle, b) separation of a fraction rich in materials with a high heat value, c) storage of the residue, rich in biodegradable and inert substances, compacted into appropriate geometrical shapes in bioreactors which can be activated and sealed, d) activation of the bioreactors with water and their service in time during anaerobic digestion to supply biogas to be used for the production of energy, e) bio-stabilisation and dehydration of the residual material of the anaerobic treatment with air, f) possible recovery of the materials produced in this way. In this way the energy contained in the waste, is extracted at the most refined level in the form of plastic, plastic/paper and methane for energy uses with maximum yield and reduced production of ash, and the end material leaving the bioreactors is fully exhausted of its energy content and inertised.
摘要:
This invention relates to systems, apparatus and methods of operating a wet combustion engine and apparatus therefore, capable of biologically burning fuels within a wet combustion chamber within a bioproactor system, including but not limited to, organic carbon containing materials especially biological, hazardous or toxic waste contaminants, in an environmentally sensitive manner. An integrated computer control system that, proactively and pre-emptively, uses feedback from bio-sensors, to monitor, record and control applicable components of the bio-system, to optimize, replenish, and sustain exponential growth of selected life-forms, including but not limited to microbes such as bacteria. In the intake cycle, a suitably prepared fuel mixture is metered into the wet combustion diffusion separation membrane chamber located within the life-support chamber of the bioproactor. In the combustion cycle, diffusion and combustion rates are monitored and timed. In the exhaust cycle, products of combustion, including water and incomplete combustion by-products both organic and inorganic, are removed. The above cycles may be repeated sequentially. The subsequent accumulation of all of the exhaust cycle's products of combustion may be collected, stored, classified, separated, recycled or discharged. Some of the potential energy released during the combustion cycle's reaction directly results in the conversion of wastes, the generation of gases and, in the case of organic carbon fuels, the generation of water. Other uses of the kinetic and potential energy released by this engine include, but are not limited to the, mechanical movements of actuators, and heat transfer to heat exchangers.
摘要:
Process for recycling and recovering solid urban waste and the like, consisting in subjecting solid urban waste (SUW), after the removal of any ferromagnetic material present therein, to high-pressure compression inside a screening press or the like, so as to separate the putrescible organic material from the dry material intended to form the combustible material, then subjecting the organic material to a process of anaerobic fermentation in a sealed and dry environment, so as to allow to extract, at the end of the fermentation cycle, the biogas thus produced, which can be used directly for producing electric power or for other uses, the residuals of fermentation in the form of humus being subsequently subjected to refining and then to screening to recover the light materials; sifting, within a known rotary screen, the dry material so as to separate the combustible components, such as paper, fabrics, wood, plastics, leather and rubber, from the inert ones, such as glass, non-ferrous metals and any organic parts; the combustible components being then brought to a size suitable for a subsequent briquetting operation in order to obtain a stockable solid fuel.