Abstract:
A clutch control method, including: determining whether a current vehicle state satisfies a condition for a clutch to enter a sliding friction state; if so, controlling the clutch to enter the sliding friction state, and determining a target sliding friction rotating speed of the clutch; determining whether the current vehicle state satisfies a condition for entering a clutch torque deviation collecting state; if so, collecting a torque deviation once and storing the torque deviation; at an end of an adjustment period, accumulating all torque deviations collected previously and taking an average value according to an accumulation number of times, so as to obtain an average torque deviation; if the average torque deviation exceeds a preset deviation threshold, recording the average torque deviation; and if the current vehicle state satisfies a condition for entering a deviation applying state, adjusting a current clutch friction coefficient according to the recorded average torque deviation.
Abstract:
A bench test calibration method for generating wet clutch torque transfer functions includes obtaining in-vehicle clutch torques at a set of shift conditions; performing a series of bench tests at various clutch pack clearances and lubrication oil flow rates at the set of shift conditions; adjusting clutch pack clearances and lubrication oil flow rates during the series of bench tests in response to a difference between a bench test measured clutch torques and the corresponding in-vehicle clutch torques exceeding a threshold; and recording relationships between first bench test measured torques and force profiles of a clutch actuator relative to the adjusted clutch pack clearances and lubrication oil flow rates for each of the set of shift conditions as a first transfer function.
Abstract:
A method for controlling clutch pressure in an electronically controlled limited slip differential comprises receiving a target clutch pressure command indicative of a desired differential torque transfer setting. Processing the target clutch pressure command comprises estimating one of a motor current or a motor speed, calculating an integrated error of a target motor current or an integrated error of a target motor speed, calculating gains over time based on the estimated motor current or the estimated motor speed and based on the integrated error of the target motor current or the integrated error of the target motor speed, applying the calculated gains thereby forming a closed loop feedback, and calculating an oscillation. The target motor current or the target motor speed is applied to a motor connected to a clutch in the differential according to the calculated oscillation to control the clutch pressure of the differential.
Abstract:
The hydraulic control device includes a hydraulic fluid temperature estimation means for estimating the temperature of the hydraulic fluid supplied to the hydraulic clutch (actuator). The hydraulic fluid temperature estimation means calculates an output of logistic regression from an integrated value of driving currents and an average value of driving voltage of the electric motor. If the calculated output of the logistic regression is equal to or more than a first threshold value, the hydraulic fluid estimation means calculates a posteriori probability from such output. If the calculated posteriori probability is equal to or more than the second threshold larger than the first threshold value, the hydraulic fluid temperature estimation means determines the posteriori probability to be a final determination result, thereby determining the temperature of the hydraulic fluid to be a predetermined temperature.
Abstract:
A vehicle includes an engine, first clutch, transmission, and controller. The transmission includes a gearbox, position sensors, and a fluid circuit. The gearbox contains a second clutch. The fluid circuit includes a pump and a flow control solenoid valve. The controller opens the valve via flow control signals to allow fluid to pass into or from the particular clutch it feeds. The controller executes steps of a method to determine an actual flow rate through the valve as the clutch moves, and also calculates a compensation scale factor as a ratio of the commanded and actual flow rates. The controller modifies the flow control signals in a subsequent clutch actuation using the compensation scale factor, such as by multiplying a commanded flow rate corresponding to the flow control signals by the compensation scale factor. A system includes rotatable members connected by a clutch, the controller, valve, and position sensor.
Abstract:
An engaging and disengaging controller for controlling the engagement and disengagement of a power transmission path by supplying a working oil of a predetermined pressure to an engaging and disengaging mechanism includes a valve for opening and closing a flow path of the working oil, and an opening/closing detection section which detects an opened or closed state of the valve. A malfunction detection apparatus for the engaging and disengaging controller includes an opening/closing control section for the valve, a time counting section which counts a predetermined time from the start of an opening/closing control, and a malfunction detection section which determines that the engaging and disengaging controller malfunctions in the case where the time counting section ends counting in such a state that the results of a detection by the opening/closing detection section do not coincide with the details of a control executed by the opening/closing control section.
Abstract:
A mobile machine includes a propulsion system. The propulsion system may include a prime mover, a traction device, and a clutch operable to transmit power produced by the prime mover to the traction device. The propulsion system may also include propulsion-system controls operable to control the clutch. The propulsion-system controls may include at least one information processor configured to estimate a temperature of the clutch based at least in part on an estimated slippage of the clutch and a fluid temperature.
Abstract:
A transmission apparatus includes a wet rotary clutch configured to transmit power from an input to an output when in an engaged position, a clutch lubricator to supply a lubricating oil to the wet rotary clutch, a synchromesh configured to perform a meshing operation while the wet rotary clutch is in the disengaged position, and a controller configured to increase a revolution speed of the input of the wet rotary clutch before the synchromesh begins the meshing operation.
Abstract:
A hydraulic control device includes an oil pan; an oil pump; a strainer; a pressure regulating valve; an oil cooler; a cooler bypass valve with an input port that is connected with a cooler supply oil passage through which the hydraulic oil to be supplied to the oil cooler flows, wherein the input port is communicatively connected with an output port when the hydraulic pressure of the hydraulic oil within the cooler supply oil passage is equal to or greater than a predetermined valve opening pressure; and a cooler bypass oil passage that connects the output port of the cooler bypass valve with an intake oil passage between the strainer and the intake port of the oil pump.
Abstract:
Accordingly, a control system for controlling a viscous clutch of a fan is provided. The control system includes a delta speed module that determines one of an over speed condition, an under speed condition, and a steady state condition based on a desired fan speed and an actual fan speed. A mode module determines a mode of the clutch based on the one of the over-speed condition, the under-speed condition, and the steady state condition, wherein the mode is one of a pump in mode, a pump out mode, and a closed loop mode. A valve control module that controls an operational state of the clutch valve based on the mode.