Abstract:
An object of the present invention is to provide a construction machine that can use the return oil from a hydraulic actuator effectively. For this purpose, a controller computes a flow rate of the return oil from a first hydraulic actuator on the basis of an operation signal from a first operation device, computes a flow rate of oil to be supplied to a second hydraulic actuator on the basis of an operation signal from a second operation device, sets smaller one of the flow rate of the return oil and the flow rate of the oil to be supplied, as a regeneration flow rate that is a flow rate of oil to be regenerated in the second hydraulic actuator, sets a flow rate obtained by subtracting the regeneration flow rate from the flow rate of the return oil, as a recovery flow rate that is a flow rate of oil to be recovered to a pressure accumulating device, adjusts an opening degree of a first control valve 2 such that a flow rate of oil supplied from the first hydraulic actuator to the pressure accumulating device coincides with the recovery flow rate, and adjusts an opening degree of a second control valve such that a flow rate of oil supplied from the first hydraulic actuator to the second hydraulic actuator coincides with the regeneration flow rate.
Abstract:
Provided is a work machine which can increase the operation speed of an actuator by a regeneration function while securing the position control accuracy of the actuator. A controller is configured to calculate a regeneration flow rate on the basis of an input amount of an operation lever and a target actuator flow rate, subtract the regeneration flow rate from the target actuator flow rate to calculate a target actuator supply flow rate, calculate a target flow rate control valve opening amount on the basis of the target actuator supply flow rate, calculate a target pump flow rate that is equal to or higher than a total target actuator supply flow rate, control a selector valve on the basis of the input amount of the operation lever, control a flow rate control valve according to the target flow rate control valve opening amount, and control a hydraulic pump according to the target pump flow rate.
Abstract:
A steering device includes: a cylinder demarcated into first and second chambers by a piston; a main valve having first and second shuttle chambers; a hydraulic source having first and second discharge ports; a first oil passage configured to connect the first chamber and the first shuttle chamber; a second oil passage configured to connect the second chamber and the second shuttle chamber; a third oil passage configured to connect the first shuttle chamber and the first discharge port; a fourth oil passage configured to connect the second shuttle chamber and the second discharge port; and a tank connected to the main valve via the third oil passage and the fourth oil passage. One of the first shuttle chamber and the second shuttle chamber of the main valve is in an opened state when the hydraulic source is stopped.
Abstract:
A fluid control valve includes a supply-air passage allowing a first port and a second port to communicate with each other, an exhaust-air passage allowing the second port and a third port to communicate with each other, a first check valve provided to the supply-air passage, a second check valve provided to the exhaust-air passage, a valve element that opens and closes a passage from the second port to the third port, and a valve hole in which the valve element is housed. The exhaust-air passage is provided between the valve hole and the valve element. The valve element has a first pressure-receiving surface that causes a fluid pressure at the first port to act, and a second pressure-receiving surface that causes a fluid pressure at the second port to act.
Abstract:
Systems and methods use selective regeneration to aid in controllability and efficiency of a hydraulic circuit. A regeneration deactivation valve can react to a differential pressure when the function is in free air and at risk of cavitating or when then function is doing positive work and needs to be efficient. When the function is at risk of cavitating, the regeneration deactivation valve can react to the potential for cavitation and the regeneration deactivation valve closes so the function regenerates. The regeneration deactivation valve can also react when the function is not at a risk of cavitating and can open up allowing the function to move with more power and efficiency.
Abstract:
Provided is a hydraulic drive apparatus for working machine capable of preventing an excessive pressure reduction on a meter-in side and moving a load in a lowering direction at a stable speed requiring no counter balance valve. The apparatus includes a hydraulic pump, a hydraulic actuator for lowering the load, an operating device, a hydraulic circuit including a meter-in flow passage, a meter-out flow passage and a regeneration flow passage, a control valve, a meter-in-flow-rate controller for controlling a meter-in flow rate, a meter-out-flow-rate controller for controlling a meter-out flow rate to one not lower than the meter-in flow rate, a back pressure generator located downstream of the regeneration flow passage in the meter-out flow passage, and a meter-out-flow-rate limiter. The meter-out-flow-rate limiter minimizes a flow passage area of the meter-out orifice when a pressure in the meter-in flow passage falls to or below a permissible pressure.
Abstract:
A hydraulic control system for a machine is provided. The hydraulic control system includes a fluid reservoir and a pump motor. The pump motor is fluidly coupled to the fluid reservoir. The pump motor is configured to provide pressurized fluid and to receive fluid to provide a power output to the shaft. The hydraulic control system further includes an actuator and an accumulator fluidly coupled to the pump motor and the actuator. The hydraulic control system further includes an accumulator valve and a controller. The accumulator valve is fluidly coupled between the accumulator and the pump motor. The controller is in communication with the pump motor and the accumulator valve. The controller is configured to detect an operator command to operate the power source; determine pressure at the accumulator; and selectively move the accumulator valve to fluidly connect the accumulator with the pump motor.
Abstract:
A solenoid valve including a spool received within a housing. The spool is configured to move to multiple positions within the housing. The housing includes supply ports, exhaust ports, and outlet ports. When the spool is in a specific location, two outlet ports are in fluid communication with each other.
Abstract:
The present disclosure relates to a control circuit and a control method for boom energy regeneration, and the control circuit for boom energy regeneration includes: a control unit which controls a discharge amount control valve, such that the amount of oil, which is discharged from a head of a boom cylinder, is supplied to a regeneration device or a rod of the boom cylinder through a hydraulic regeneration line, and when the regeneration device has an abnormality, the amount of oil, which is discharged from the head of the boom cylinder, is supplied to the main control valve through a hydraulic discharge line.
Abstract:
A hydraulic motor circuit for driving an auger is disclosed. The circuit includes a hydraulic motor that receives oil from an oil supply via a supply line and returns oil to the oil supply via a return line. The circuit further includes a main stage pressure relief valve and a first pilot stage relief valve operable if pressure in the return line exceeds a predetermined value corresponding to an allowable inertia load acting on the motor, opening of the first pilot stage relief valve causing the main stage pressure relief valve to open, allowing flow to be diverted from the return line to the supply line and back to the motor. A control valve is configured to block flow to the first pilot stage relief valve when pressure, in the supply line is greater than pressure in the return line. If pressure in the return line exceeds pressure in the supply line, the control valve shifts open and exposes the first pilot stage relief valve to pressure in the return line.