Abstract:
There is disclosed a solenoid valve for a fuel injection system, in which solenoid valve a closing element which interacts with a valve seat in order to close and open the solenoid valve is actuated by a control pin, the control pin being formed by way of a solenoid plunger. Furthermore, a high pressure fuel pump is disclosed which has a solenoid valve of this type.
Abstract:
The housing (18) of the fuel injection valve (10) of the device for intermittently injecting fuel into the combustion chamber of an internal combustion engine comprises a high-pressure inlet (34) with a conical sealing face (44). The high-pressure chamber (36) is disposed in the housing (18) from the high-pressure inlet (34). A cartridge-like, independent component (56) is inserted into the high-pressure chamber (36). Said component comprises the valve carrier (46), the non-return valve (48), the holding element (50), and preferably the filter body (52′). The valve carrier (46) is provided with a conical outer sealing face (69), by which the valve carrier rests against the conical sealing face (44). A fixing element (74) presses the supply line (16) against the valve carrier (46).
Abstract:
A pipe connector comprising a connector body, a first fitting connectable to a first double wall pipe, the first fitting comprising a first portion connectable to an inner flow space and a second portion connectable to an outer flow space of the first double wall pipe, a second fitting connectable to a second pipe, a third fitting comprising a first portion and a second portion, which first portion is connectable to the third pipe, and a flow channel arranged in the connector body for interconnecting the first portion of the first fitting, the second fitting and the first portion of the third fitting. The pipe connector comprises a leak channel arranged in flow connection with the second portion of the first fitting, a leakage outlet for discharging fluid from the leak channel, a discharge channel extending from the second portion of the third fitting to the leakage outlet and providing a continuous flow connection therebetween, and a closure member having a first position, in which fluid flow from the leak channel to the leakage outlet is prevented, and a second position, in which fluid flow from the leak channel to the leakage outlet is allowed. The closure member is arranged to move from the first position to the second position when fluid pressure in the leak channel rises above a certain limit.
Abstract:
A fuel injector for an internal combustion engine includes: an injector body of substantially elongate form and defining an injector body axis; an injector nozzle disposed at one end of the injector body; and a plurality of element connectors for providing fluid and/or electrical connection into and/or out of the fuel injector wherein at least some of the element connectors are arranged to be rotatable relative to one another about the injector body axis.
Abstract:
Fuel injection equipment includes a high pressure fuel source able to flow high pressure fuel via connecting pipes to a plurality of injectors. The fuel injection equipment is high pressure fuel reservoir-less, a distributed storage for high pressure fuel being arranged in the pipes and in the injectors.
Abstract:
A fuel injector (200) for an internal combustion engine is disclosed. The fuel injector is installable in a cylinder head bore of a cylinder head of the engine and comprises a body region (B) arranged to be received within the cylinder head bore, and a head region (H) arranged to extend outside the cylinder head bore to protrude from the cylinder head when the injector is installed in the cylinder head bore, a first valve needle (116) arranged to control the injection of a gaseous fuel from a first outlet, a second valve needle (120) arranged to control the injection of a liquid fuel from a second outlet, a gaseous fuel inlet (130) for admitting the gaseous fuel to the injector, and a liquid fuel inlet (156) for admitting the liquid fuel to the injector. The gaseous fuel inlet (130) is disposed in the body region (B) of the injector, and wherein the liquid fuel inlet (156) is disposed in the head region (H) of the injector. Preferably, the injector includes an internal accumulator volume (270) so that an external fuel rail is not necessary.
Abstract:
A fuel supply system with an accumulator that allows for the accumulation of fuel at a pressure greater than the nominal operating pressure of the fuel supply system. The accumulation of fuel allows for less frequent fuel pump operation and therefore a reduction in overall fuel consumption of an engine.
Abstract:
A direct injection fuel supply system, in one exemplary implementation, includes a lift fuel pump, a positive displacement pump, at least one fuel injector and an accumulator assembly. The lift pump is adapted to be in fluid communication with a supply of fuel and the positive displacement pump is in fluid communication with and downstream of the lift pump. The at least one injector is in fluid communication with an outlet of the positive displacement pump via a high pressure fuel line. The accumulator assembly includes an accumulator and a valve, where the valve is in direct fluid communication with the high pressure fuel line and the injector. The valve is selectively controlled to at least one of an open state providing fluid communication between the accumulator and the high pressure fuel line and a closed state blocking fluid communication between the accumulator and the high pressure fuel line.
Abstract:
The present invention shows a high-pressure injector having the following assemblies: an injector unit (1), a drive unit (2) for driving the injector unit (1), preferably a high-pressure storage unit (3) for supplying the injector unit (1) with fuel, and a high-pressure connection (4). Provision is made in this respect that the high-pressure injector has a housing (5) in which a plurality of the named assemblies are arranged behind one another in the longitudinal direction of the injector, wherein the housing (5) completely envelops at least one of the named assemblies, in particular the drive unit (2) and/or the high-pressure storage unit (3). The high-pressure injector with the injector unit can be used in all types of internal combustion engines, preferably in diesel engines.