摘要:
A method of estimating an ideal air-fuel ratio in an internal combustion engine, comprises receiving an output of an upstream air-fuel ratio sensor and an output of a downstream air-fuel ratio sensor, the upstream air-fuel ratio sensor being attached to an exhaust gas passage such that it is positioned upstream of a catalyst provided in the exhaust gas passage to purify an exhaust gas, the downstream air-fuel ratio sensor being attached to the exhaust gas passage such that it is positioned downstream of the catalyst; detecting a state in which the catalyst does not store or release oxygen based on the output of the downstream air-fuel ratio sensor; and deciding as an estimated ideal air-fuel ratio in the internal combustion engine an air-fuel ratio detected by the upstream air-fuel ratio sensor when the state in which the catalyst does not store or release oxygen is detected.
摘要:
A vehicle includes an internal combustion engine, an air-fuel ratio sensor provided in an exhaust passage of the internal combustion engine, and a controller. The controller is configured to diagnose a responsiveness of the air-fuel ratio sensor on the basis of an output voltage of the air-fuel ratio sensor in a predefined period. The period is a period over which exhaust gas goes through the air-fuel ratio sensor during the internal combustion engine is rotating without fuel injection.
摘要:
A deterioration diagnosis device, which performs a deterioration diagnosis of a catalyst, includes an exhaust-gas sensor provided downstream of the catalyst in a flow direction of exhaust gas such that an output value of the exhaust-gas sensor is used at least in the deterioration diagnosis. The deterioration diagnosis device further includes the constant current supply portion which applies a voltage to a sensor element of the exhaust-gas sensor to change an output characteristic of the exhaust-gas sensor, a response-time detection portion which detects a response time required for the output value of the exhaust-gas sensor to change from a rich threshold to a lean threshold, a response-time correction portion which controls the constant current supply portion to change the output characteristic of the exhaust-gas sensor so as to shorten the response time when the response time is longer than a predetermined reference time.
摘要:
A method for monitoring an exhaust gas sensor coupled in an engine exhaust is provided. In one embodiment, the method comprises indicating exhaust gas sensor degradation based on characteristics of a distribution of extreme values of a plurality of sets of lambda differentials collected during selected operating conditions. In this way, the exhaust gas sensor may be monitored in a non-intrusive manner.
摘要:
A procedure for detecting manipulations at lambda comprises the following steps; the lambda probe is excited by at least one electric excitation signal; at least one electric response signal of the probe is detected; the at least one response signal is compared to at least one default electric response signal that characterizes a not manipulated probe; the deviation of the detected at least one electric response signal from the at least one default electric response signal is used for detecting a manipulation of the probe. A device for detecting manipulations at lambda probes characterized by a switch assembly, with which the probe can be impinged with an electric excitation signal, in particular a step-wise electric excitation, preferably with a current impulse, by a evaluation switch device for evaluating a response signal, in particular the probe voltage and for comparing the excitation signal with the response signal and for assuming a manipulation in the case of a deviation of the response signal from a response signal that characterizes a not manipulated probe.
摘要:
A system includes a cylinder equivalence ratio (EQR) module, a location estimation module, a sensor module, and a fuel control module. The cylinder EQR module determines a first EQR corresponding to a first exhaust gas expelled from a first cylinder and determines a second EQR corresponding to a second exhaust gas expelled from a second cylinder. The location estimation module determines when the first and second exhaust gases mix in an exhaust manifold to form a third exhaust gas having a third EQR. The sensor module estimates an EQR of a fourth exhaust gas based on the third EQR. The fourth exhaust gas is located at an oxygen sensor in the exhaust manifold. The fuel control module controls an amount of fuel supplied to an engine based on a difference between the estimated EQR and an EQR corresponding to measurements from the oxygen sensor.
摘要:
A main feedback control based on an output of an upstream sensor, and a sub-feedback control based on an output of a downstream sensor are executed. A specified fuel disturbance is inputted and an output of the downstream sensor is measured to derive a characteristic value. Based on the characteristic value, it is determined whether a purifying capacity of the exhaust gas purifying system including the catalyst, the upstream sensor, and the downstream sensor is deteriorated.
摘要:
The degradation simulator is used for a gas sensor including a sensor element having a solid electrolyte layer and a pair of electrodes located opposite to each other across from the solid electrolyte layer, the sensor element outputting a sensor output signal having a value depending on concentration of a specific gas in the ambient gas. The degradation simulator includes a first setting function of enabling variably setting a time constant delay which appears on the sensor output signal when concentration of the specific gas changes, a second setting function of enabling variably setting a dead time delay which appears on the sensor output signal when concentration of the specific gas changes, and an adding function of adding at least one of the time constant delay and dead time delay to the sensor output signal in order to generate a pseudo-degraded sensor output signal in accordance with an external instruction.
摘要:
An internal combustion engine includes an exhaust system, an oxygen sensor in the exhaust system and a sensor malfunction monitor. The sensor malfunction monitor measures a rate of change of a signal from the sensor on detecting a turning point of the signal and detects a malfunction when a rate of change of the signal exceeds a threshold. Alternatively, the sensor malfunction monitor measures a response time interval starting from a point in time at which a diagnostic function begins to force an air-fuel ratio to change (e.g., from lean-to-rich or rich-to-lean) and ends at a point in time when a turning point of the signal is detected. The sensor malfunction monitor detects a malfunction when the delay time of the response time interval, or average delay time from a plurality of measured response time intervals, exceeds a time threshold.
摘要:
The invention concerns a system for assisting regeneration of pollution management means (1) associated with oxidation catalyst forming means (2) implementing an oxygen storage capacity (OSC) function, and integrated in an exhaust line of a motor vehicle diesel engine (4), wherein the engine is associated with common ramp means (7) supplying fuel to the cylinders thereof. The invention is characterized in that it comprises means (8) for determining the frequency of the pollution management means regeneration and for comparing same to predetermined threshold values (10), to control the engine (4) in a first lean mixture regeneration operating mode (11) for frequencies less than the threshold values or in a second regeneration operating mode implementing engine operating sequences alternating rich mixture and lean mixture operating phases (12) for frequencies more than the threshold values.