Abstract:
A jarring tool used to dislodge a stuck tubular string or bottom hole assembly within an underground wellbore. A funnel element is placed underground either within, or as part of, a tubular string. A deformable ball may be seated within the funnel element to block fluid from passing within the tubular string. Hydraulic pressure may build within the tubular string until it exceeds the pressure the ball can withstand. This will cause the ball to deform and be expelled through the funnel element. With no ball to block its flow, fluid will be rapidly released through the funnel element. The rapid release of fluid will cause a powerful jarring or jolting to the tubular string or bottom hole assembly. Deformed balls may be captured in a cartridge chamber installed within the drill string and sized to create turbulent fluid flow within the drill string.
Abstract:
A well tool assembly includes a first well tool and a second well tool. The first well tool includes a first casing, a first drill bit and a drilling jar. The first drill bit is configured to drill through a subterranean zone to form a wellbore. The drilling jar is axially coupled to the casing uphole of the first drill bit. The drilling jar has an outer diameter that is greater than an outer diameter of the first casing. The second well tool has a second casing and a second drill bit. The second casing has an outer diameter that is smaller than an inner diameter of the drilling jar. The second drill bit has an outer diameter that is smaller than the inner diameter of the drilling jar.
Abstract:
A device for generating pressure waves in a well or a wellbore. The device includes a housing containing an impact-generating mechanism for generating the pressure waves and a connector for connecting the housing to a conveyor for transporting the device to any desired location within the well or the wellbore. The device may be used for a number of downhole applications such as cleaning perforations, fracturing processes, vibration of a casing to prevent fluid flow in a cemented annulus, hydraulic jar operations for freeing stuck downhole objects, generating data to optimize pumping parameters and as an enhancement to percussion drilling techniques.
Abstract:
A jarring tool includes a spring and a hydraulic piston cylinder arrangement for controlling the release of a mandrel to initiate a jarring force. The tool includes an adjustment mechanism for adjusting the minimum amount of an upward pulling force required to release the mandrel. The adjustment mechanism includes an axially adjustable trigger sleeve that cooperates with a dog clutch surrounding the mandrel.
Abstract:
An apparatus and method for drilling is disclosed, including a drill string with at least one jar and one reaction valve. Drilling fluid flows through the reaction valve. The reaction valve is selectively throttled, which creates a differential pressure across the valve seat. The differential pressure creates an axial force that is transferred to the jar, which aids in cocking or firing the jar. In an embodiment, a reaction valve throttles downward fluid flow to create a downward compressional force on the jar, while in another embodiment, a reaction valve throttles upward fluid flow to create an upward tensile force on the jar. Upward and downward fluid flow may be alternatively throttled for alternately firing the jar upwards and downwards. A bypass valve may be included in the drill string for establishing a drilling fluid flow path when such may be otherwise obstructed by foreign matter in the wellbore.
Abstract:
Embodiments disclosed herein relate to a jar including the following: a mandrel; an outer housing slidably disposed about the mandrel; a ball stop housing disposed below the outer housing; a lower sub disposed below the ball stop housing; and a ball stop assembly disposed in the ball stop housing. The ball stop assembly includes a ball stop pivotally disposed in the ball stop assembly.
Abstract:
A hydraulic jar comprising a housing and a mandrel slidably disposed in the housing forming an annular space therebetween. In an embodiment, the hydraulic jar comprises a flow control device fixedly connected to the mandrel and disposed in the annular space to divide the annular space into a first portion and a second portion. The flow control device comprises an annular member slidably positioned about the mandrel, wherein the annular member comprises a face, an inside surface, and an outside surface, wherein the outside surface of the annular member is disposed against an inside surface of the tubular housing, wherein the outer surface of the annular member and the inside surface of the tubular housing allow fluid flow therebetween at a first flow rate, wherein the inside surface of the annular member and the retaining surface of the retaining assembly allow fluid flow therebetween at a second flow rate.
Abstract:
A mud motor for use in a wellbore includes: a stator; a rotor, the stator and rotor operable to rotate the rotor in response to fluid pumped between the rotor and the stator; and a lock. The lock is operable to: rotationally couple the rotor to the stator in a locked position, receive an instruction signal from the surface, release the rotor in an unlocked position, and actuate from the locked position to the unlocked position in response to receiving the instruction signal.
Abstract:
A vibratory tool for use in a tubular string to prevent sticking or to release a stuck string features a fluid operated dart valve working in conjunction with an impact sleeve to deliver continuous axial jarring blows in opposed directions as long as flow is maintained. Movement of one of those components axially in opposed directions opens and closes access to opposed lateral ports so that a lateral vibration is also established as flow cyclically occurs and stops sequentially at opposed lateral outlets.
Abstract:
A method and apparatus for a wellbore assembly. The wellbore assembly may comprise a conveyance member including at least one of a continuous spooled rod, a wireline, and a slickline; an accumulator system connected to the conveyance member; and a setting tool connected to the accumulator system. The accumulator system may be configured to supply a fluid pressure to actuate the setting tool. A method of operating a wellbore tool may comprise lowering a wellbore assembly into a wellbore using a conveyance member including at least one of a continuous spooled rod, a wireline, and a slickline, wherein the wellbore assembly includes an accumulator system and a setting tool. The method may comprise actuating the accumulator system to provide a fluid pressure to the setting tool. The method may comprise actuating the setting tool using the fluid pressure.