Abstract:
Compositions and colloidal particles are provided that may be used to improve a papermaking process. The compositions and colloidal particles may include a cationic polymer, an inorganic salt, and an anionic component. A papermaking process carried out using the presently disclosed compositions and colloidal particles may produce a paper product that has increased strength properties.
Abstract:
Paper strength systems including polyamine-polyamidoamine-epihalohydrin (PPAE) resin are disclosed. Also disclosed are methods of forming a paper including applying a strength system comprising PPAE to cellulosic fiber, as well as the resultant paper.
Abstract:
One or more embodiments include paper, methods of making paper, compositions, and the like, are provided. In various exemplary embodiments described herein, a paper material may be formed by treating a cellulosic fiber or an aqueous pulp slurry, with a strength including a polyamine resin.
Abstract:
Paper strength systems including polyamine-polyamidoamine-epihalohydrin (PPAE) resin are disclosed. Also disclosed are methods of forming a paper including applying a strength system comprising PPAE to cellulosic fiber, as well as the resultant paper.
Abstract:
Thermoplastic polymer compositions comprising starch and articles made therefrom are water stable or may be rendered so. One method of making water stable thermoplastic compositions comprises the steps of mixing destructured starch with polyhydric alcohol and acid, and forming an ester condensation reaction product from at least a portion of the polyhydric alcohol and acid. In some embodiments, a pre-polymer formed from the ester condensation reaction may be provided as a pre-polymer that is mixed with the starch.
Abstract:
The present invention is directed to compositions comprising a cellulose reactive functionalized polyvinylamine first adduct, compositions comprising combinations of the cellulose reactive functionalized polyvinylamine first adduct and cellulose reactive functionalized polyvinylamide second adduct, methods for preparing first adduct and second adduct blends and finally methods of increasing the wet or dry strength of paper by incorporation into the paper furnish or coating a paper or board with said adducts.
Abstract:
Novel sizing mixtures to achieve improved sizing along with other benefits is disclosed and claimed. The invention is a composition comprising a sizing mixture having a stabilizing amount of one or more aldehyde-functionalized polymers and a sizing amount of a sizing composition. The invention is also a method of improving paper and paperboard production and enhancing sizing through adding an effective amount of the disclosed sizing mixture to the paper machine and a method of producing a medium having cellulosic fibers, wherein the method includes adding the disclosed sizing mixture to the medium at any point in a papermaking process.
Abstract:
Thermoplastic polymer compositions comprising starch and articles made therefrom are water stable or may be rendered so. One method of making water stable thermoplastic compositions comprises the steps of mixing destructured starch with polyhydric alcohol and acid, and forming an ester condensation reaction product from at least a portion of the polyhydric alcohol and acid. In some embodiments, a pre-polymer formed from the ester condensation reaction may be provided as a pre-polymer that is mixed with the starch.
Abstract:
Thermoplastic polymer compositions comprising starch and articles made therefrom are water stable or may be rendered so. One method of making water stable thermoplastic compositions comprises the steps of mixing destructured starch with polyhydric alcohol and triglyceride, and forming a transesterification reaction product from at least a portion of the polyhydric alcohol and triglyceride.
Abstract:
The present invention refers to a process for the production of paper from a suspension containing cellulosic fibers, and optionally fillers, comprising adding to the suspension at least one cationic organic polymer and an aqueous silica-containing composition comprising an anionic naphthalene sulphonate formaldehyde condensate and anionic silica-based particles, the composition having a weight ratio of naphthalene sulphonate formaldehyde condensate to silica-based particles within the range of from 0.2:1 to 99:1, and containing naphthalene sulphonate formaldehyde condensate and silica-based particles in an amount of at least 0.01% by weight, based on the total weight of the aqueous silica-containing composition, and with the proviso that the composition contains substantially no cellulose-reactive sizing agent. The invention also encompasses an aqueous silica-containing composition and a method for preparation of an aqueous silica-containing compound.