Abstract:
Engineered, reinforced leather materials (engineered leathers) including a composite of a fibrous matrix that has been tanned to allow crosslinking of the fibrous matrix to the collagen formed by cultured cells (e.g., fibroblasts). These engineered leathers may be referred to as fiber-reinforced biological tissue composites. Also described herein are methods of making such fiber-reinforced biological tissue composites.
Abstract:
Textile compositions comprising at least one filamentous fungus are disclosed, as are methods for making and using such textile compositions. Embodiments of the textile compositions generally include at least one of a plasticizer, a polymer, and a crosslinker, in addition to the filamentous fungus. The disclosed textile compositions are particularly useful as analogs or substitutes for conventional textile compositions, including but not limited to leather.
Abstract:
A cover material for a vehicle seat provides favorable touch while utilizing the texture of a leather material. A cover material for a vehicle seat includes: a leather portion made of natural leather or artificial leather; and a mesh fabric portion bonded to the back side of the leather portion.
Abstract:
The invention is directed to a composite material comprising a biofabricated material and a secondary component. The secondary component may be a porous material, such as a sheet of paper, cellulose, or fabric that has been coated or otherwise contacted with the biofabricated material. The biofabricated material comprises a uniform network of crosslinked collagen fibrilsand provides strength, elasticity and an aesthetic appearance to the composite material.
Abstract:
A biofabricated material containing a network of crosslinked collagen fibrils is disclosed. This material is composed of collagen which is also a major component of natural leather and is produced by a process of fibrillation of collagen molecules into fibrils, crosslinking the fibrils and lubricating the crosslinked fibrils. Unlike natural leathers, this biofabricated material exhibits non-anisotropic (not directionally dependent) physical properties, for example, a sheet of biofabricated material can have substantially the same elasticity or tensile strength when stretched or stressed in different directions. Unlike natural leather, it has a uniform texture that facilitates uniform uptake of dyes and coatings. Aesthetically, it produces a uniform and consistent grain for ease of manufacturability. It can have substantially identical grain, texture and other aesthetic properties on both sides distinct from natural leather where the grain increases from one side (e.g., distal surface) to the other (proximal inner layers).
Abstract:
The invention is directed to a composite material comprising a biofabricated material and a secondary component. The secondary component may be a porous material, such as a sheet of paper, cellulose, or fabric that has been coated or otherwise contacted with the biofabricated material. The biofabricated material comprises a uniform network of crosslinked collagen fibrils and provides strength, elasticity and an aesthetic appearance to the composite material.
Abstract:
Described herein is a method for producing a biofabricated material from collagen or collagen-like proteins. The collagen or collagen-like proteins are isolated from animal sources or produced by recombinant DNA techniques or by chemical synthesis. The collagen or collagen-like proteins are fibrillated, crosslinked, dehydrated and lubricated thus forming the biofabricated material having a substantially uniform network of collagen fibrils.
Abstract:
A method for manufacturing an implantable film and a prosthesis comprising such a film The present invention relates to a method for manufacturing a non porous film intended to be implanted in the human body, said method comprising the following steps: preparation of a first film, called intermediate film, via gelling of a starting solution comprising at least one polymer selected in the group consisting of collagen, glycosaminoglycans, and mixtures thereof, immersion of said intermediate film in an alkaline composition comprising at least one C1-C4 alcohol, drying of the film obtained at the end of the immersing step. The invention also relates to a method for manufacturing a prosthesis comprising a textile support and such a film.
Abstract:
Pre-impregnated composite material (prepreg) is provided that can be cured/molded to form composite parts having high damage tolerance and interlaminar fracture toughness. The matrix resin includes a thermoplastic particle component that includes a mixture of polyamide 12 particles and polyamide 11 particles.
Abstract:
A protective textile sleeve having enhanced end fray resistance and being adapted to be bonded to an elongate member extending therethrough, and method of construction thereof, are provided. The sleeve has a wall with a cavity bounded by an innermost surface extending between opposite open ends. A first material, including a hot melt adhesive material, facilitating bonding the wall to an outer surface of an elongate member extending therethrough, is bonded to the wall immediately adjacent the opposite ends, and a second material, facilitating prevention of end fray of the wall ends, including an elastomeric material is bonded to the wall immediately adjacent the opposite ends.