Abstract:
Biopolymers, and natural and bio additives are process-sensitive materials, prefer minimized steps and mild parameters. With all of prior achievements in making products from biopolymers, biopolymers have less than 1% of total polymers global usage after over a century of growth. A process is disclosed to make fibers from biopolymers and to incorporate the fibers with additives during the fiber forming steps via minimized steps and mild parameters.
Abstract:
An apparatus is disclosed for preparing a quantity of individual treated fibers from one or more fiber mats. The apparatus comprises a fiber treatment zone, and a conveyor for conveying each mat through the fiber treatment zone. In the treatment zone each mat is impregnated by an applicator with a treatment material, such as a crosslinking substance, and conveyed directly to an attrition device. The attrition device fiberizes the mats to form a fiber output having a low nit level, such as no more than about three, and a dryer both dries the fiber output and cures the crosslinking substance. The fiberizer is configured to minimize the accumulation of fiber at locations therein. Fiber is transported from the attrition device to the dryer at a high velocity under reduced pressure to promote drying. A heated retention bin is provided after drying to increase curing time in the system. A thermobonding agent may be added to the dried and cured fibers to enhance the wet strength of webs made from the fiber.
Abstract:
A method by process for providing a liquid-free, toxic-free, environmentally friendly, non-transfiguring, flame and fire retardant, immersion-proof, non-pellicular and intra-matrix type aqueous repellent protective barrier to preferred substrates by various related embodiments, with particular utility toward dermal materials, both natural and synthesized. Methods enable durable and complete `breathable` treatments that are generally capable of virtual weightlessness and invisibility, without utilization of liquids. Complete process is particularly adaptable to `pocketable` packageability that is extremely cost-effective, undamageable, and longevous in shelf-life. Methods embodied generally include steps of (1) one or more specific, yet optional and/or elective substrate pre-treatment preparations capable of providing necessary functions utilized to qualify treatment potential of subject substrates, wherein such functions include conditioning or enhancing substrate textures or properties that would become integral with the quality level of the protective matrix formed by the process, (2) application of embedding and/or impregnating substrate(s) with specific fine, dry, organic silane-treated particulate materials, by utilizing specific procedure, apparatus, and modes of force that enables and ensures a highly simplified multi-performance immersion-quality all-aqueous protective barrier providing additional qualities of: no addition of gloss or glare, no odor, profound inconspicuity, and substantial added flame and fire retardance.
Abstract:
A method of forming a crosslinked cellulose product is disclosed wherein cellulose fibers are exposed to a solution that includes a catalyst and a crosslinking agent selected from the group consisting of a cyclic N-sulfatoimide or cyclic N-phosphatoimide; a dimethoxyethanal; a mixture of glyoxal and imidazolidone; a diethanol; or a periodate. Specific examples of the crosslinking agents of the present invention include pyridinium N-sulfatosuccinimide; 2,2'-sulfonyldiethanol; sodium periodate; a mixture of dimethoxyethanal and urea; and a mixture of glyoxal and 2-imidazolidone. An acid or base catalyst, as appropriate, may be used with the crosslinking agent to increase the crosslinking reaction rate. In especially preferred embodiments, cellulose fibers are exposed to the crosslinking agent and catalyst, then separated into individualized fibers in a fiberizer. The individualized fibers are then dried and cured at an elevated temperature such that intrafiber cellulose crosslinking bonds are formed to the substantial exclusion of interfiber bonds. The resulting cellulose fibers have high absorbency, bulk, and wet and dry resiliency that makes them suitable for use in such cellulose products as paper towels, diapers, and sanitary products.
Abstract:
A PROCESS FOR MAKING SPECIALLY SHAPED TEXTILE MATERIAL OR FABRIC ARTICLES SUCH AS GARMENTS, COMPRISING THE STEP OF ADAPTING A FABRIC COMPOSED AT LEAST IN PART OF A NOVEL FIBER FORMING MATERIAL CONTAINING AT LEAST TWO POLYMERIC INGREDIENTS OF DIFFERING MELTING POINTS, AND HEARING THE FABRIC TO SHRINK FIT ON SAID MOLD.
Abstract:
The invention relates to a method for producing an antimicrobial fabric or yarn, said method comprising the steps of immersing a fabric or yarn in an aqueous solution of a metal salt whilst simultaneously subjecting said solution to ultrasonic radiation; and removing the fabric or yarn from said solution and subsequently converting the metal salt in situ in the fabric or yarn into metal oxide nanoparticles, preferably via chemical and heat treatment. Fabrics and yarns obtained or obtainable by such method are also provided. In a further aspect the invention provides an apparatus for performing such method.
Abstract:
A method of making a woven sailcloth comprising the steps of: selecting a first set of yarns comprising at least partially a first type of yarn; selecting a second set of yarns comprising at least partially a second type of yarn; weaving the first set of yarns and the second set of yarns such that the first set of yarns are arranged along a first direction and the second set of yarns are arranged along a second direction which is different from the first direction, choosing a chemical solution which has the property of shrinking the first type of yarn in its longitudinal direction more than the second type of yarn when the first type of yarn and the second type of yarn are exposed to said chemical solution, and exposing the woven sailcloth to said chemical solution. A sailcloth is also disclosed based on said method. A sail made from woven sail cloth is also disclosed. A laminated sailcloth comprising a layer of woven sailcloth is also disclosed.
Abstract:
A method for upgrading existing nylon fibers comprising the steps of (a) impregnating the existing nylon fibers with a chemical for obtaining impregnated nylon fibers; (b) drawing the impregnated nylon fibers for obtaining drawn nylon fibers; and (c) drying the drawn nylon fibers for obtaining upgraded nylon fibers. An upgraded nylon fiber, derived from an existing nylon fiber by the method. A nylon fiber reinforced hardened cementitious composite comprising a hardened cementitious matrix, the cementitious matrix including staples of textile or non-textile (technical) upgraded nylon fibers. In both cases the fibers are preferably upgraded using the method. A method for manufacturing a nylon fiber reinforced hardened cementitious composite. The method comprising the steps of (a) preparing a mix including a cementitious material, staples of upgraded nylon fibers and/or textile nylon fibers and an activating material (e.g., water) for activating said cementitious material to form a hardened cementitious matrix; (b) placing the mix; and (c) allowing the mix to harden.