Abstract:
A multi-ply paperboard comprising at least one ply of conventional cellulose fibers and from about 0.1 to about 6 weight percent of a water-borne binding agent; and at least one ply of chemically intrafiber crosslinked cellulosic high-bulk fibers and from about 0.1 to about 6 weight percent of a water-borne binding agent. The water-borne binding agent may be a starch, a modified starch, a polyvinyl alcohol, a polyvinyl acetate, a polyethylene/acrylic acid copolymer, an acrylic acid polymer, a polyacrylate, a polyacrylamide, a polyamine, guar gum, an oxidized polyethylene, a polyvinyl chloride, a polyvinyl chloride/acrylic acid copolymer, an acrylonitrile/butadiene/styrene copolymer or polyacrylonitrile. A method for making the paperboard is disclosed.
Abstract:
The present invention provides compositions, useful for making lyocell fibers, having a high hemicellulose content, a low lignin content and including cellulose that has a low average degree of polymerization (D.P.). Further, the present invention provides processes for making compositions, useful for making lyocell fibers, having a high hemicellulose content, a low lignin content and including cellulose that has a low average degree of polymerization. The present invention also provides lyocell fibers containing a high proportion of hemicellulose. Further, the lyocell fibers of the present invention have enhanced dye-binding properties and a reduced tendency to fibrillate.
Abstract:
Cellulosic fibers intrafiber crosslinked with a polymeric polycarboxylic acid crosslinking agent are disclosed. In one embodiment, the polymeric polycarboxylic acid is polyacrylic acid and, in another embodiment, the polycarboxylic acid is polymaleic acid. Methods for forming cellulosic fibers having stable intrafiber crosslinks and for forming crosslinked cellulosic fibers having low knot level are also disclosed.
Abstract:
A cellulose fiber having extended biostability and the method of its manufacture are described. While prior treatments of cellulose with biotoxic metal compounds have given improved resistance to decay, these treatments have not been entirely satisfactory where the fiber had to be refined before use. Refining energy was very high and fiber length loss was substantial. Treatment of cellulose fiber with didecyldimethylammonium chloride (DDAC) or bromide (DDAB), these materials in combination with low levels of copper, or low levels of copper alone, has given a product with very good biostability without a major increase in refining energy or loss of fiber length. The treated fiber is particularly advantageous as a reinforcing component for cement board products.
Abstract:
A cellulose fiber having extended biostability and the method of its manufacture are described. While prior treatments of cellulose with biotoxic metal compounds have given improved resistance to decay, these treatments have not been entirely satisfactory where the fiber had to be refined before use. Refining energy was very high and fiber length loss was substantial. Treatment of cellulose fiber with didecyldimethylammonium chloride (DDAC) or bromide (DDAB), these materials in combination with low levels of copper, or low levels of copper alone, has given a product with very good biostability without a major increase in refining energy or loss of fiber length. The treated fiber is particularly advantageous as a reinforcing component for cement board products.
Abstract:
A method of making a carboxylated carbohydrate is disclosed, cellulose being a preferred carbohydrate material. Carboxylated cellulose fibers can be produced whose fiber strength and degree of polymerization is not significantly sacrificed. The method involves the use of a catalytic amount of a hindered cyclic oxammonium compounds as a primary oxidant and chlorine dioxide as a secondary oxidant in an aqueous environment. The oxammonium compounds may be formed in situ from their corresponding amine, hydroxylamine, or nitroxyl compounds. The oxidized cellulose may be stabilized against D.P. loss and color reversion by further treatment with an oxidant such as sodium chlorite or a chlorine dioxide/hydrogen peroxide mixture. Alternatively it may be treated with a reducing agent such as sodium borohydride. In the case of cellulose the method results in a high percentage of carboxyl groups located at the fiber surface. The product is especially useful as a papermaking fiber where it contributes strength and has a higher attraction for cationic additives. The product is also useful as an additive to recycled fiber to increase strength. The method can be used to improve properties of either virgin or recycled fiber. It does not require high α-cellulose fiber but is suitable for regular market pulps.
Abstract:
A lyocell nonwoven fabric having fibers characterized by pebbled surfaces and variable cross sections and diameters along the fibers and from fiber to fiber, is disclosed. The lyocell nonwoven fabric is produced by centrifugal spinning, melt blowing or spunbonding. The lyocell nonwoven fabric has fibers that can be made in the microdenier range with average weights as low as one denier or less. The lyocell nonwoven fabric has fibers with low gloss, a reduced tendency to fibrillate and have enhanced dye receptivity.
Abstract:
A method for increasing filler retention of cellulosic fiber sheets is disclosed. In the method, cellulosic fibers with increased anionic sites are treated with either positively charged filler particles and/or amphoteric filler particles or a cationic retention aid and negatively charged filler particles and/or amphoteric filler particles. Cellulosic fiber sheets with retained filler particles are also disclosed.
Abstract:
The present invention provides cellulosic fibers having high wet bulk and methods for their preparation. In one embodiment, the invention provides cellulosic fibers catalytically crosslinked with glyoxal and, optionally, a glycol. In another embodiment, cellulosic fibers are crosslinked with a combination of glyoxal and a glyoxal-derived resin selected from the group consisting of a glyoxal/polyol condensate, a cyclic urea/glyoxal/polyol condensate, a cyclic urea/glyoxal condensate, and mixtures thereof.
Abstract:
Carboxylated cellulosic fibers are disclosed. The fibers include a polycarboxylic acid covalently coupled to the fibers. Methods for producing the fibers and for producing fibrous products that incorporate the fibers are also disclosed.